Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 15375 | Accepted: 5592 |
Description
You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
Input
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single 0.
Output
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
Sample Output
1 4 3
Source
Ulm Local 2007
给定一个无序数列,相同的数在一起求a[i]到a[j]中重复次数最多数的个数。用dp[i][0]储存第i个位置与前面重复多少
如 -1 -1 1 1 1 1 3 10 10 10 对应是 1 2 3 1 2 3 4 1 1 2 3利用b[i]表示该位置上对应的数最后出现在数组中的位置如 -1 -1 1 1 1 1 3 10 10 10对应是 2 2 6 6 6 6 7 10 10 10;用rmq的st算法求最大值。可惜会错因为不能保证dp[i][0]是1所以会错
解决办法分两部搜索dp[i][0]到dp[z][0],dp[z+1][0]到dp[j][0](dp[z][0]中代表从i开始第一个值为1的下标)对于dp[z+1][0]到
dp[j][0]用rmq求其最大值即可,对于dp[i][0]到dp[z][0]可以知道他们的值都是相等的所以值为b[i]-i+1。
如果一开始b[i]>=j说明整个区间的值都一样输出j-i+1就好了。
ACcode:
#pragma warning(disable:4786)//使命名长度不受限制 #pragma comment(linker, "/STACK:102400000,102400000")//手工开栈 #include <map> #include <set> #include <queue> #include <cmath> #include <stack> #include <cctype> #include <cstdio> #include <cstring> #include <stdlib.h> #include <iostream> #include <algorithm> #define rd(x) scanf("%d",&x) #define rd2(x,y) scanf("%d%d",&x,&y) #define rds(x) scanf("%s",x) #define rdc(x) scanf("%c",&x) #define ll long long int #define maxn 100010 #define mod 1000000007 #define INF 0x3f3f3f3f //int 最大值 #define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i) #define MT(x,i) memset(x,i,sizeof(x)) #define PI acos(-1.0) #define E exp(1) using namespace std; int dp[maxn][30]; int a[maxn]; int b[maxn]; int t,x,y; int mm[maxn]; int n,q; void RMQ(){ int t,k; for(int i=n;i>0;i--){ if(i==n) t=n; else if(a[i]!=a[i+1]) t=i; b[i]=t; } FOR(i,1,n){ if(i==1)k=1; else { if(a[i]==a[i-1])k++; else k=1; } dp[i][0]=k; } FOR(j,1,20) FOR(i,1,n) if(i+(1<<j)-1<=n) dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); /*FOR(i,1,n) cout<<b[i]<<" "; cout<<'\12'; FOR(i,1,n) cout<<dp[i][0]<<" "; cout<<'\12';*/ } void rmq(){ if(b[x]>=y){ printf("%d\n",y-x+1); return ; } int temp=x; x=b[x]+1; int k=mm[y-x+1]; int ans=max(dp[x][k],dp[y-(1<<k)+1][k]); // cout<<x<<" "<<y; //cout<<"asdasd "<<ans<<'\12'; ans=max(ans,b[temp]-temp+1); printf("%d\n",ans); } int main(){ while(rd(n)!=EOF&&n){ MT(dp,0); MT(a,0); MT(b,0); rd(q); mm[0]=-1; FOR(i,1,n){ rd(a[i]); mm[i]=(i&(i-1))?mm[i-1]:mm[i-1]+1; } RMQ(); FOR(i,1,q){ rd2(x,y); rmq(); } } return 0; } /* 10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0 */
错了好多次www