第11课:Spark Streaming源码解读之Driver中的ReceiverTracker架构设计以及具体实现彻底研究

本期内容
本讲讲解sparkStreaming的driver部分的数据的接受和管理的部分,即receiverTracker,包括:
1.receiverTracker的架构设计
2.消息循环系统
3.receiverTracker的具体实现

通过前面的课程,我们知道:
receiverTracker以driver中具体自己的算法在具体的executor上启动receiver。
启动的方式是:把每个receiver封装成1个task,该tasks是job中唯一的task,也就是说,
有多少receiver就会分发多少个Job,每个Job只有一个task,该task内部只有1条数据即该receiver的数据。
receiverTracker在启动receiver的时候,有个receiverSupervisorImpl,它在启动的时候反过来帮我们启动receiver,receiver不断地接受数据,转过来通过blockGenerator把自己接受的数据封装成1个1个的block(背后有定时器),不断地把数据存储,有2中存储方式:第一种直接通过blockmanger存储,第二种先写WAL;存储过之后receiverSupervisorImpl会把存储的数据的元数据汇报给receiverTracker,(实际上汇报给的是receiverTracker的rpc通讯实体。),汇报的消息包括具体的数据的id,具体位置,多少条,大小等等。receiverTracker接受到这些数据后,转过来再进行一下步的数据管理工作。
本节讲解receiverTracker接受到这些数据后,会怎样具体进行一下步的处理。

ReceiverSupervisorImpl通过receivedBlockHandler来写数据,根据是否要写wal,receivedBlockHandler的具体实现有2种方式:

  private val receivedBlockHandler: ReceivedBlockHandler = {
    if (WriteAheadLogUtils.enableReceiverLog(env.conf)) {
      if (checkpointDirOption.isEmpty) {
        throw new SparkException(
          "Cannot enable receiver write-ahead log without checkpoint directory set. " +
            "Please use streamingContext.checkpoint() to set the checkpoint directory. " +
            "See documentation for more details.")
      }
      //使用了wal时的实现
      new WriteAheadLogBasedBlockHandler(env.blockManager, receiver.streamId,
        receiver.storageLevel, env.conf, hadoopConf, checkpointDirOption.get)
    } else {
     //没使用wal时的实现
      new BlockManagerBasedBlockHandler(env.blockManager, receiver.storageLevel)
    }
  }

接受到数据且封装成block后的处理:

  /** Store an ArrayBuffer of received data as a data block into Spark's memory. */
  def pushArrayBuffer(
      arrayBuffer: ArrayBuffer[_],
      metadataOption: Option[Any],
      blockIdOption: Option[StreamBlockId]
    ) {
    //通过pushAndReportBlock()来存储数据且把元数据汇报给driver:
    pushAndReportBlock(ArrayBufferBlock(arrayBuffer), metadataOption, blockIdOption)
  }

  /** Store a iterator of received data as a data block into Spark's memory. */
  def pushIterator(
      iterator: Iterator[_],
      metadataOption: Option[Any],
      blockIdOption: Option[StreamBlockId]
    ) {
     //通过pushAndReportBlock()来存储数据且把元数据汇报给driver:
    pushAndReportBlock(IteratorBlock(iterator), metadataOption, blockIdOption)
  }

  /** Store the bytes of received data as a data block into Spark's memory. */
  def pushBytes(
      bytes: ByteBuffer,
      metadataOption: Option[Any],
      blockIdOption: Option[StreamBlockId]
    ) {
     //通过pushAndReportBlock()来存储数据且把元数据汇报给driver:
    pushAndReportBlock(ByteBufferBlock(bytes), metadataOption, blockIdOption)
  }

通过pushAndReportBlock()来存储数据且把元数据汇报给driver:

  /** Store block and report it to driver */
  def pushAndReportBlock(
      receivedBlock: ReceivedBlock,
      metadataOption: Option[Any],
      blockIdOption: Option[StreamBlockId]
    ) {
    val blockId = blockIdOption.getOrElse(nextBlockId)
    val time = System.currentTimeMillis
    val blockStoreResult = receivedBlockHandler.storeBlock(blockId, receivedBlock)
    logDebug(s"Pushed block $blockId in ${(System.currentTimeMillis - time)} ms")
    val numRecords = blockStoreResult.numRecords
    //把存储的block信息封装起来。
    val blockInfo = ReceivedBlockInfo(streamId, numRecords, metadataOption, blockStoreResult)
    //发消息给ReceiverTracker,askWithRetry确保发送成功
    trackerEndpoint.askWithRetry[Boolean](AddBlock(blockInfo))
    logDebug(s"Reported block $blockId")
  }

其中用到了case class ReceivedBlockInfo()把欲存储的block信息封装起来。

/** Information about blocks received by the receiver */
private[streaming] case class ReceivedBlockInfo( streamId: Int, numRecords: Option[Long], metadataOption: Option[Any], blockStoreResult: ReceivedBlockStoreResult ) {

ReceivedBlockStoreResult封装了欲存储的block的元数据信息:

/** Trait that represents the metadata related to storage of blocks */
private[streaming] trait ReceivedBlockStoreResult {
  // Any implementation of this trait will store a block id
  def blockId: StreamBlockId
  // Any implementation of this trait will have to return the number of records
  //题外话:从这里得到一个启示,我们谈spark处理的数据量大小,专业的说法是处理多少条数据,而不是处理的数据的大小(因为每条数据可能有多个字段,当处理音频视频文件时数据量一般都很大)。
  def numRecords: Option[Long]
}

我们说ReceiverSupervisorImpl发送的消息是发送给ReceiverTracker,以下源码是证据:
/* Remote RpcEndpointRef for the ReceiverTracker /
private val trackerEndpoint = RpcUtils.makeDriverRef(“ReceiverTracker”, env.conf, env.rpcEnv)

在ReceiverTracker启动时,新建的消息通讯体的名字确实是”ReceiverTracker”:

  /** Start the endpoint and receiver execution thread. */
  def start(): Unit = synchronized {
    if (isTrackerStarted) {
      throw new SparkException("ReceiverTracker already started")
    }

    if (!receiverInputStreams.isEmpty) {
      endpoint = ssc.env.rpcEnv.setupEndpoint(
        "ReceiverTracker", new ReceiverTrackerEndpoint(ssc.env.rpcEnv))
      if (!skipReceiverLaunch) launchReceivers()
      logInfo("ReceiverTracker started")
      trackerState = Started
    }
  }

ReceiverTracker是整个block管理的中心,它使用ReceiverTrackerEndpoint消息循环体接受来自Receiver的消息,我们来看下该消息通讯体:

/** RpcEndpoint to receive messages from the receivers. */
  private class ReceiverTrackerEndpoint(override val rpcEnv: RpcEnv) extends ThreadSafeRpcEndpoint {

    // TODO Remove this thread pool after https://github.com/apache/spark/issues/7385 is merged
    private val submitJobThreadPool = ExecutionContext.fromExecutorService(
      ThreadUtils.newDaemonCachedThreadPool("submit-job-thread-pool"))

    private val walBatchingThreadPool = ExecutionContext.fromExecutorService(
      ThreadUtils.newDaemonCachedThreadPool("wal-batching-thread-pool"))

    @volatile private var active: Boolean = true

    override def receive: PartialFunction[Any, Unit] = {
      // Local messages
      case StartAllReceivers(receivers) =>
        val scheduledLocations = schedulingPolicy.scheduleReceivers(receivers, getExecutors)
        for (receiver <- receivers) {
          val executors = scheduledLocations(receiver.streamId)
          updateReceiverScheduledExecutors(receiver.streamId, executors)
          receiverPreferredLocations(receiver.streamId) = receiver.preferredLocation
          startReceiver(receiver, executors)
        }
      case RestartReceiver(receiver) =>
        // Old scheduled executors minus the ones that are not active any more
        val oldScheduledExecutors = getStoredScheduledExecutors(receiver.streamId)
        val scheduledLocations = if (oldScheduledExecutors.nonEmpty) {
            // Try global scheduling again
            oldScheduledExecutors
          } else {
            val oldReceiverInfo = receiverTrackingInfos(receiver.streamId)
            // Clear "scheduledLocations" to indicate we are going to do local scheduling
            val newReceiverInfo = oldReceiverInfo.copy(
              state = ReceiverState.INACTIVE, scheduledLocations = None)
            receiverTrackingInfos(receiver.streamId) = newReceiverInfo
            schedulingPolicy.rescheduleReceiver(
              receiver.streamId,
              receiver.preferredLocation,
              receiverTrackingInfos,
              getExecutors)
          }
        // Assume there is one receiver restarting at one time, so we don't need to update
        // receiverTrackingInfos
        startReceiver(receiver, scheduledLocations)
      case c: CleanupOldBlocks =>
        receiverTrackingInfos.values.flatMap(_.endpoint).foreach(_.send(c))
      case UpdateReceiverRateLimit(streamUID, newRate) =>
        for (info <- receiverTrackingInfos.get(streamUID); eP <- info.endpoint) {
          eP.send(UpdateRateLimit(newRate))
        }
      // Remote messages
      case ReportError(streamId, message, error) =>
        reportError(streamId, message, error)
    }

    override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
      // Remote messages
      case RegisterReceiver(streamId, typ, host, executorId, receiverEndpoint) =>
        val successful =
          registerReceiver(streamId, typ, host, executorId, receiverEndpoint, context.senderAddress)
        context.reply(successful)
      case AddBlock(receivedBlockInfo) =>
        if (WriteAheadLogUtils.isBatchingEnabled(ssc.conf, isDriver = true)) {
          walBatchingThreadPool.execute(new Runnable {
            override def run(): Unit = Utils.tryLogNonFatalError {
              if (active) {
                context.reply(addBlock(receivedBlockInfo))
              } else {
                throw new IllegalStateException("ReceiverTracker RpcEndpoint shut down.")
              }
            }
          })
        } else {
          context.reply(addBlock(receivedBlockInfo))
        }
      case DeregisterReceiver(streamId, message, error) =>
        deregisterReceiver(streamId, message, error)
        context.reply(true)
      // Local messages
      case AllReceiverIds =>
        context.reply(receiverTrackingInfos.filter(_._2.state != ReceiverState.INACTIVE).keys.toSeq)
      case StopAllReceivers =>
        assert(isTrackerStopping || isTrackerStopped)
        stopReceivers()
        context.reply(true)
    }

    /** * Return the stored scheduled executors that are still alive. */
    private def getStoredScheduledExecutors(receiverId: Int): Seq[TaskLocation] = {
      if (receiverTrackingInfos.contains(receiverId)) {
        val scheduledLocations = receiverTrackingInfos(receiverId).scheduledLocations
        if (scheduledLocations.nonEmpty) {
          val executors = getExecutors.toSet
          // Only return the alive executors
          scheduledLocations.get.filter {
            case loc: ExecutorCacheTaskLocation => executors(loc)
            case loc: TaskLocation => true
          }
        } else {
          Nil
        }
      } else {
        Nil
      }
    }

    /** * Start a receiver along with its scheduled executors */
    private def startReceiver(
        receiver: Receiver[_],
        scheduledLocations: Seq[TaskLocation]): Unit = {
      def shouldStartReceiver: Boolean = {
        // It's okay to start when trackerState is Initialized or Started
        !(isTrackerStopping || isTrackerStopped)
      }

      val receiverId = receiver.streamId
      if (!shouldStartReceiver) {
        onReceiverJobFinish(receiverId)
        return
      }

      val checkpointDirOption = Option(ssc.checkpointDir)
      val serializableHadoopConf =
        new SerializableConfiguration(ssc.sparkContext.hadoopConfiguration)

      // Function to start the receiver on the worker node
      val startReceiverFunc: Iterator[Receiver[_]] => Unit =
        (iterator: Iterator[Receiver[_]]) => {
          if (!iterator.hasNext) {
            throw new SparkException(
              "Could not start receiver as object not found.")
          }
          if (TaskContext.get().attemptNumber() == 0) {
            val receiver = iterator.next()
            assert(iterator.hasNext == false)
            val supervisor = new ReceiverSupervisorImpl(
              receiver, SparkEnv.get, serializableHadoopConf.value, checkpointDirOption)
            supervisor.start()
            supervisor.awaitTermination()
          } else {
            // It's restarted by TaskScheduler, but we want to reschedule it again. So exit it.
          }
        }

      // Create the RDD using the scheduledLocations to run the receiver in a Spark job
      val receiverRDD: RDD[Receiver[_]] =
        if (scheduledLocations.isEmpty) {
          ssc.sc.makeRDD(Seq(receiver), 1)
        } else {
          val preferredLocations = scheduledLocations.map(_.toString).distinct
          ssc.sc.makeRDD(Seq(receiver -> preferredLocations))
        }
      receiverRDD.setName(s"Receiver $receiverId")
      ssc.sparkContext.setJobDescription(s"Streaming job running receiver $receiverId")
      ssc.sparkContext.setCallSite(Option(ssc.getStartSite()).getOrElse(Utils.getCallSite()))

      val future = ssc.sparkContext.submitJob[Receiver[_], Unit, Unit](
        receiverRDD, startReceiverFunc, Seq(0), (_, _) => Unit, ())
      // We will keep restarting the receiver job until ReceiverTracker is stopped
      future.onComplete {
        case Success(_) =>
          if (!shouldStartReceiver) {
            onReceiverJobFinish(receiverId)
          } else {
            logInfo(s"Restarting Receiver $receiverId")
            self.send(RestartReceiver(receiver))
          }
        case Failure(e) =>
          if (!shouldStartReceiver) {
            onReceiverJobFinish(receiverId)
          } else {
            logError("Receiver has been stopped. Try to restart it.", e)
            logInfo(s"Restarting Receiver $receiverId")
            self.send(RestartReceiver(receiver))
          }
      }(submitJobThreadPool)
      logInfo(s"Receiver ${receiver.streamId} started")
    }

    override def onStop(): Unit = {
      submitJobThreadPool.shutdownNow()
      active = false
      walBatchingThreadPool.shutdown()
    }

    /** * Call when a receiver is terminated. It means we won't restart its Spark job. */
    private def onReceiverJobFinish(receiverId: Int): Unit = {
      receiverJobExitLatch.countDown()
      receiverTrackingInfos.remove(receiverId).foreach { receiverTrackingInfo =>
        if (receiverTrackingInfo.state == ReceiverState.ACTIVE) {
          logWarning(s"Receiver $receiverId exited but didn't deregister")
        }
      }
    }

    /** Send stop signal to the receivers. */
    private def stopReceivers() {
      receiverTrackingInfos.values.flatMap(_.endpoint).foreach { _.send(StopReceiver) }
      logInfo("Sent stop signal to all " + receiverTrackingInfos.size + " receivers")
    }
  }

我们来过滤下ReceiverTracker的源码。

** Enumeration to identify current state of a Receiver */
private[streaming] object ReceiverState extends Enumeration {
  //type是scala语法,别名
  type ReceiverState = Value
  val INACTIVE, SCHEDULED, ACTIVE = Value
}

/** * Messages used by the NetworkReceiver and the ReceiverTracker to communicate * with each other. */
 //sealed:是scala语法,表示该类包含它所有的子类, 即所有的消息类型都在这里。
private[streaming] sealed trait ReceiverTrackerMessage
private[streaming] case class RegisterReceiver( streamId: Int, typ: String, host: String, executorId: String, receiverEndpoint: RpcEndpointRef ) extends ReceiverTrackerMessage
private[streaming] case class AddBlock(receivedBlockInfo: ReceivedBlockInfo)
  extends ReceiverTrackerMessage
private[streaming] case class ReportError(streamId: Int, message: String, error: String)
private[streaming] case class DeregisterReceiver(streamId: Int, msg: String, error: String)
  extends ReceiverTrackerMessage

/** * Messages used by the driver and ReceiverTrackerEndpoint to communicate locally. */
private[streaming] sealed trait ReceiverTrackerLocalMessage

/** * This message will trigger ReceiverTrackerEndpoint to restart a Spark job for the receiver. */
private[streaming] case class RestartReceiver(receiver: Receiver[_])
  extends ReceiverTrackerLocalMessage

/** * This message is sent to ReceiverTrackerEndpoint when we start to launch Spark jobs for receivers * at the first time. */
private[streaming] case class StartAllReceivers(receiver: Seq[Receiver[_]])
  extends ReceiverTrackerLocalMessage

/** * This message will trigger ReceiverTrackerEndpoint to send stop signals to all registered * receivers. */
private[streaming] case object StopAllReceivers extends ReceiverTrackerLocalMessage

/** * A message used by ReceiverTracker to ask all receiver's ids still stored in * ReceiverTrackerEndpoint. */
 //ReceiverTrackerEndpoint存储了AllReceiverIds信息
private[streaming] case object AllReceiverIds extends ReceiverTrackerLocalMessage

private[streaming] case class UpdateReceiverRateLimit(streamUID: Int, newRate: Long)
  extends ReceiverTrackerLocalMessage

receiver执行的管理包括3个方面:receiver的启动与重新启动,receiver的回收,receiver执行过程中接受数据的管理。

/** * This class manages the execution of the receivers of ReceiverInputDStreams. Instance of * this class must be created after all input streams have been added and StreamingContext.start() * has been called because it needs the final set of input streams at the time of instantiation. * * @param skipReceiverLaunch Do not launch the receiver. This is useful for testing. */
private[streaming]
class ReceiverTracker(ssc: StreamingContext, skipReceiverLaunch: Boolean = false) 
//ReceiverTracker是driver级别,不需要发送到executor,故不需要序列化。
extends Logging {

  //从DstreamGraph中取得所有的input streams信息
  private val receiverInputStreams = ssc.graph.getReceiverInputStreams()
  private val receiverInputStreamIds = receiverInputStreams.map { _.id }
  private val receivedBlockTracker = new ReceivedBlockTracker(
    ssc.sparkContext.conf,
    ssc.sparkContext.hadoopConfiguration,
    receiverInputStreamIds,
    ssc.scheduler.clock,
    ssc.isCheckpointPresent,
    Option(ssc.checkpointDir)
  )
  //listenerBus对监控很关键
  private val listenerBus = ssc.scheduler.listenerBus

我们来看下ReceiverTracker对receiveAndReply消息的处理:

   override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
      // Remote messages
      case RegisterReceiver(streamId, typ, host, executorId, receiverEndpoint) =>
        val successful =
          registerReceiver(streamId, typ, host, executorId, receiverEndpoint, context.senderAddress)
        context.reply(successful)
      case AddBlock(receivedBlockInfo) =>
        if (WriteAheadLogUtils.isBatchingEnabled(ssc.conf, isDriver = true)) {
          //这里用到了线程池里的线程,因为wal的处理是耗时的,不能阻塞主线程
          walBatchingThreadPool.execute(new Runnable {
            override def run(): Unit = Utils.tryLogNonFatalError {
              if (active) {
                context.reply(addBlock(receivedBlockInfo))
              } else {
                throw new IllegalStateException("ReceiverTracker RpcEndpoint shut down.")
              }
            }
          })
        } else {
          //非wal模式的处理:
          context.reply(addBlock(receivedBlockInfo))
        }
      case DeregisterReceiver(streamId, message, error) =>
        deregisterReceiver(streamId, message, error)
        context.reply(true)
      // Local messages
      case AllReceiverIds =>
        context.reply(receiverTrackingInfos.filter(_._2.state != ReceiverState.INACTIVE).keys.toSeq)
      case StopAllReceivers =>
        assert(isTrackerStopping || isTrackerStopped)
        stopReceivers()
        context.reply(true)
    }

无论是否启动了wal,都会调用receivedBlockTracker.addBlock()来处理:

 /** Add new blocks for the given stream */
  private def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {
    receivedBlockTracker.addBlock(receivedBlockInfo)
  }

来看下receivedBlockTracker:

/**
 * Class that keep track of all the received blocks, and allocate them to batches
 * when required. All actions taken by this class can be saved to a write ahead log
 * (if a checkpoint directory has been provided), so that the state of the tracker
 * (received blocks and block-to-batch allocations) can be recovered after driver failure.
 *
 * Note that when any instance of this class is created with a checkpoint directory,
 * it will try reading events from logs in the directory.
 */
private[streaming] class ReceivedBlockTracker(
    conf: SparkConf,
    hadoopConf: Configuration,
    streamIds: Seq[Int],
    clock: Clock,
    recoverFromWriteAheadLog: Boolean,
    checkpointDirOption: Option[String])
  extends Logging {

来看下receivedBlockTracker.addBlock(receivedBlockInfo):

  /** Add received block. This event will get written to the write ahead log (if enabled). */
  def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {
    try {
      val writeResult = writeToLog(BlockAdditionEvent(receivedBlockInfo))
      if (writeResult) {
        synchronized {
          getReceivedBlockQueue(receivedBlockInfo.streamId) += receivedBlockInfo
        }
        logDebug(s"Stream ${receivedBlockInfo.streamId} received " +
          s"block ${receivedBlockInfo.blockStoreResult.blockId}")
      } else {
        logDebug(s"Failed to acknowledge stream ${receivedBlockInfo.streamId} receiving " +
          s"block ${receivedBlockInfo.blockStoreResult.blockId} in the Write Ahead Log.")
      }
      writeResult
    } catch {
      case NonFatal(e) =>
        logError(s"Error adding block $receivedBlockInfo", e)
        false
    }
  }

receivedBlockTracker把unallocated blocks 分配给batch:

/** * Allocate all unallocated blocks to the given batch. * This event will get written to the write ahead log (if enabled). */
  def allocateBlocksToBatch(batchTime: Time): Unit = synchronized {
    if (lastAllocatedBatchTime == null || batchTime > lastAllocatedBatchTime) {
      val streamIdToBlocks = streamIds.map { streamId =>
          (streamId, getReceivedBlockQueue(streamId).dequeueAll(x => true))
      }.toMap
      val allocatedBlocks = AllocatedBlocks(streamIdToBlocks)
      if (writeToLog(BatchAllocationEvent(batchTime, allocatedBlocks))) {
        timeToAllocatedBlocks.put(batchTime, allocatedBlocks)
        lastAllocatedBatchTime = batchTime
      } else {
        logInfo(s"Possibly processed batch $batchTime need to be processed again in WAL recovery")
      }
    } else {
      // This situation occurs when:
      // 1. WAL is ended with BatchAllocationEvent, but without BatchCleanupEvent,
      // possibly processed batch job or half-processed batch job need to be processed again,
      // so the batchTime will be equal to lastAllocatedBatchTime.
      // 2. Slow checkpointing makes recovered batch time older than WAL recovered
      // lastAllocatedBatchTime.
      // This situation will only occurs in recovery time.
      logInfo(s"Possibly processed batch $batchTime need to be processed again in WAL recovery")
    }
  }

我们来看下ReceiverTracker对receive消息的处理:

 override def receive: PartialFunction[Any, Unit] = {
      // Local messages
      case StartAllReceivers(receivers) =>
        val scheduledLocations = schedulingPolicy.scheduleReceivers(receivers, getExecutors)
        for (receiver <- receivers) {
          val executors = scheduledLocations(receiver.streamId)
          updateReceiverScheduledExecutors(receiver.streamId, executors)
          receiverPreferredLocations(receiver.streamId) = receiver.preferredLocation
          startReceiver(receiver, executors)
        }
      //当receiver出故障时,需要发消息重启
      case RestartReceiver(receiver) =>
        // Old scheduled executors minus the ones that are not active any more
        val oldScheduledExecutors = getStoredScheduledExecutors(receiver.streamId)
        val scheduledLocations = if (oldScheduledExecutors.nonEmpty) {
            // Try global scheduling again
            oldScheduledExecutors
          } else {
            val oldReceiverInfo = receiverTrackingInfos(receiver.streamId)
            // Clear "scheduledLocations" to indicate we are going to do local scheduling
            val newReceiverInfo = oldReceiverInfo.copy(
              state = ReceiverState.INACTIVE, scheduledLocations = None)
            receiverTrackingInfos(receiver.streamId) = newReceiverInfo
            schedulingPolicy.rescheduleReceiver(
              receiver.streamId,
              receiver.preferredLocation,
              receiverTrackingInfos,
              getExecutors)
          }
        // Assume there is one receiver restarting at one time, so we don't need to update
        // receiverTrackingInfos
        startReceiver(receiver, scheduledLocations)
      //清楚掉处理过了的不需要的block信息
      case c: CleanupOldBlocks =>
        receiverTrackingInfos.values.flatMap(_.endpoint).foreach(_.send(c))
      //限制数据处理速度,限流
      case UpdateReceiverRateLimit(streamUID, newRate) =>
        for (info <- receiverTrackingInfos.get(streamUID); eP <- info.endpoint) {
          eP.send(UpdateRateLimit(newRate))
        }
      // Remote messages
      //报错
      case ReportError(streamId, message, error) =>
        reportError(streamId, message, error)
    }

总结:receiver接受到数据,合并并存储数据之后,ReceiverSupervisorImpl会把元数据汇报给ReceiverTracker,ReceiverTracker接受到元数据之后,内部有个ReceivedBlockTracker来会管理接受的数据的分配,JobGenerator会在每个batchDuartion内从ReceiverTracker获取元数据信息,据此生成rdd。
ReceivedBlockTracker在内部专门来管理block的元数据信息。
从设计模式角度讲,表面干活的是ReceiverTracker,而实际干活的是ReceivedBlockTracker,这是门面模式 Facade模式。

本次分享来自于王家林老师的课程‘源码版本定制发行班’,在此向王家林老师表示感谢!
王家林老师新浪微博:http://weibo.com/ilovepains
王家林老师博客:http://blog.sina.com.cn/ilovepains

欢迎大家交流技术知识!一起学习,共同进步!
笔者的微博:http://weibo.com/keepstriving

你可能感兴趣的:(第11课:Spark Streaming源码解读之Driver中的ReceiverTracker架构设计以及具体实现彻底研究)