Hadoop中reduce端shuffle过程及源码解析

一、概要描述
在Child的main函数中通过TaskUmbilicalProtocol协议,从TaskTracker获得需要执行的Task,并调用Task的run方法来执行。在ReduceTask而Task的run方法会通过java反射机制构造Reducer,Reducer.Context,然后调用构造的Reducer的run方法执行reduce操作。不同于map任务,在执行reduce任务前,需要把map的输出从map运行的tasktracker上拷贝到reducer运行的tasktracker上。
Reduce需要集群上若干个map任务的输出作为其特殊的分区文件。每个map任务完成的时间可能不同,因此只要有一个任务完成,reduce任务就开始复制其输出。这就是reduce任务的复制阶段。其实是启动若干个MapOutputCopier线程来复制完所有map输出。在复制完成后reduce任务进入排序阶段。这个阶段将由LocalFSMerger或InMemFSMergeThread合并map输出,维持其顺序排序。【即对有序的几个文件进行归并,采用归并排序】在reduce阶段,对已排序输出的每个键都要调用reduce函数,此阶段的输出直接写到文件系统,一般为HDFS上。(如果采用HDFS,由于tasktracker节点也是DataNoe,所以第一个块副本将被写到本地磁盘。 即数据本地化)
二、 流程描述
1.在ReduceTak中 构建ReduceCopier对象,调用其fetchOutputs方法。
2. 在ReduceCopier的fetchOutputs方法中分别构造几个独立的线程。相互配合,并分别独立的完成任务。
2.1 GetMapEventsThread线程通过RPC询问TaskTracker,对每个完成的Event,获取maptask所在的服务器地址,即MapTask输出的地址,构造URL,加入到mapLocations,供copier线程获取。
2.2构造并启动若干个MapOutputCopier线程,通过http协议,把map的输出从远端服务器拷贝的本地,如果可以放在内存中,则存储在内存中调用,否则保存在本地文件。
2.3LocalFSMerger对磁盘上的map 输出进行归并。
2.4nMemFSMergeThread对内存中的map输出进行归并。
3.根据拷贝到的map输出构造一个raw keyvalue的迭代器,作为reduce的输入。
4. 调用runNewReducer方法中根据配置的Reducer类构造一个Reducer实例和运行的上下文。并调用reducer的run方法来执行到用户定义的reduce操作。
5.在Reducer的run方法中从上下文中取出一个key和该key对应的Value集合(Iterable类型),调用reducer的reduce方法进行处理。
6. Recuer的reduce方法是用户定义的处理数据的方法,也是用户唯一需要定义的方法。
Hadoop中reduce端shuffle过程及源码解析_第1张图片
三、代码详细
ReduceTask的run方法。

@SuppressWarnings("unchecked")
    public void run(JobConf job, final TaskUmbilicalProtocol umbilical)
            throws IOException, InterruptedException, ClassNotFoundException {
        job.setBoolean("mapred.skip.on", isSkipping());

        if (isMapOrReduce()) {
            copyPhase = getProgress().addPhase("copy");
            sortPhase  = getProgress().addPhase("sort");
            reducePhase = getProgress().addPhase("reduce");
        }
        // start thread that will handle communication with parent
        TaskReporter reporter = new TaskReporter(getProgress(), umbilical);
        reporter.startCommunicationThread();
        boolean useNewApi = job.getUseNewReducer();
        initialize(job, getJobID(), reporter, useNewApi);

        // check if it is a cleanupJobTask
        if (jobCleanup) {
            runJobCleanupTask(umbilical, reporter);
            return;
        }
        if (jobSetup) {
            runJobSetupTask(umbilical, reporter);
            return;
        }
        if (taskCleanup) {
            runTaskCleanupTask(umbilical, reporter);
            return;
        }

        // Initialize the codec
        codec = initCodec();

        boolean isLocal = "local".equals(job.get("mapred.job.tracker", "local"));

        //如果不是一个本地执行额模式(就是配置中不是分布式的),则要启动一个ReduceCopier来拷贝Map的输出,即Reduce的输入。
        if (!isLocal) {
            reduceCopier = new ReduceCopier(umbilical, job, reporter);
            if (!reduceCopier.fetchOutputs()) {
                if(reduceCopier.mergeThrowable instanceof FSError) {
                    LOG.error("Task: " + getTaskID() + " - FSError: " + 
                            StringUtils.stringifyException(reduceCopier.mergeThrowable));
                    umbilical.fsError(getTaskID(), 
                            reduceCopier.mergeThrowable.getMessage());
                }
                throw new IOException("Task: " + getTaskID() + 
                        " - The reduce copier failed", reduceCopier.mergeThrowable);
            }
        }
        copyPhase.complete();                       
        //拷贝完成后,进入sort阶段。
        setPhase(TaskStatus.Phase.SORT);
        statusUpdate(umbilical);

        final FileSystem rfs = FileSystem.getLocal(job).getRaw();
        RawKeyValueIterator rIter = isLocal
                ? Merger.merge(job, rfs, job.getMapOutputKeyClass(),
                        job.getMapOutputValueClass(), codec, getMapFiles(rfs, true),
                        !conf.getKeepFailedTaskFiles(), job.getInt("io.sort.factor", 100),
                        new Path(getTaskID().toString()), job.getOutputKeyComparator(),
                        reporter, spilledRecordsCounter, null)
                        : reduceCopier.createKVIterator(job, rfs, reporter);

                // free up the data structures
                mapOutputFilesOnDisk.clear();

                sortPhase.complete();                         // sort is complete
                setPhase(TaskStatus.Phase.REDUCE); 
                statusUpdate(umbilical);
                Class keyClass = job.getMapOutputKeyClass();
                Class valueClass = job.getMapOutputValueClass();
                RawComparator comparator = job.getOutputValueGroupingComparator();

                if (useNewApi) {
                    runNewReducer(job, umbilical, reporter, rIter, comparator, 
                            keyClass, valueClass);
                } else {
                    runOldReducer(job, umbilical, reporter, rIter, comparator, 
                            keyClass, valueClass);
                }
                done(umbilical, reporter);
    }

ReduceTask的runNewReducer方法。根据配置构造reducer以及其运行的上下文,调用reducer的reduce方法。

Java

@SuppressWarnings("unchecked")
    private <INKEY,INVALUE,OUTKEY,OUTVALUE>
    void runNewReducer(JobConf job,
            final TaskUmbilicalProtocol umbilical,
            final TaskReporter reporter,
            RawKeyValueIterator rIter,
            RawComparator<INKEY> comparator,
            Class<INKEY> keyClass,
            Class<INVALUE> valueClass
            ) throws IOException,InterruptedException, 
            ClassNotFoundException {
        //1. 构造TaskContext
        org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
                new org.apache.hadoop.mapreduce.TaskAttemptContext(job, getTaskID());
        //2. 根据配置的Reducer类构造一个Reducer实例
        org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE> reducer = (org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE>)
                ReflectionUtils.newInstance(taskContext.getReducerClass(), job);
        //3. 构造RecordWriter
        org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE> output =
                (org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE>)
                outputFormat.getRecordWriter(taskContext);
        job.setBoolean("mapred.skip.on", isSkipping());

        //4. 构造Context,是Reducer运行的上下文
        org.apache.hadoop.mapreduce.Reducer.Context 
        reducerContext = createReduceContext(reducer, job, getTaskID(),
                rIter, reduceInputValueCounter, 
                output, committer,
                reporter, comparator, keyClass,
                valueClass);
        reducer.run(reducerContext);
        output.close(reducerContext);
    }

抽象类Reducer的run方法。从上下文中取出一个key和该key对应的Value集合(Iterable类型),调用reducer的reduce方法进行处理。


3
4
5
6
7
public void run(Context context) throws IOException, InterruptedException {
    setup(context);
    while (context.nextKey()) {
      reduce(context.getCurrentKey(), context.getValues(), context);
    }
    cleanup(context);
  }

Reducer类的reduce,是用户一般会覆盖来执行reduce处理逻辑的方法。

@SuppressWarnings("unchecked")
  protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context
                        ) throws IOException, InterruptedException {
    for(VALUEIN value: values) {
      context.write((KEYOUT) key, (VALUEOUT) value);
    }

参考下文:
http://www.idouba.net/hadoop_mapreduce_tasktracker_child_reduce/

你可能感兴趣的:(hadoop,reduce,shuffle-源码)