本期内容:
1. ReceiverTracker的架构设计
2. 消息循环系统
3. ReceiverTracker具体实现
ReceiverTacker类如下,从源码注释可以看出该类的作用。
管理ReceiverInputDStreams的执行,记录Receiver发来的元数据信息。ReceiverTacker类构造时必须传入StreamingContext对象。
ReceiverTracker:
private val receivedBlockTracker = new ReceivedBlockTracker(
ssc.sparkContext.conf,
ssc.sparkContext.hadoopConfiguration,
receiverInputStreamIds,
ssc.scheduler.clock,
ssc.isCheckpointPresent,
Option(ssc.checkpointDir)
)
用于记录跟踪Receiver发送来Block的源数据信息。
ReceiverTacker类内部有ReceiverTackerEndpoint这个消息通信体,用于和运行在Executor端的ReceiverSupervisorImpl进行通信,包括Receiver的注册,重启Receiver,清除之前的Block数据,更新限流值,添加Block元数据信息等消息。
ReceiverTracker:
/** RpcEndpoint to receive messages from the receivers. */
private class ReceiverTrackerEndpoint(override val rpcEnv: RpcEnv) extends ThreadSafeRpcEndpoint {
RPC消息通信体。
接下来以接收到来自Executor端的ReceiverSupervisorImpl发来添加元数据信息的AddBlock消息,进行讲解具体的处理流程。
ReceiverTracker:
...
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
// Remote messages
case RegisterReceiver(streamId, typ, host, executorId, receiverEndpoint) =>
val successful =
registerReceiver(streamId, typ, host, executorId, receiverEndpoint, context.senderAddress)
context.reply(successful)
// 若启用WAL方式,则在线程池中执行addBlock函数,否则直接执行addBlock函数,回复给ReceiverSupervisorImpl添加源数据是否成功的结果。
case
AddBlock
(receivedBlockInfo) =>
if (WriteAheadLogUtils.isBatchingEnabled(ssc.conf, isDriver = true)) {
walBatchingThreadPool.execute(new Runnable {
override def run(): Unit = Utils.tryLogNonFatalError {
if (active) {
context.reply(
addBlock
(receivedBlockInfo))
} else {
throw new IllegalStateException("ReceiverTracker RpcEndpoint shut down.")
}
}
})
} else {
context.reply(
addBlock
(receivedBlockInfo))
}
case DeregisterReceiver(streamId, message, error) =>
deregisterReceiver(streamId, message, error)
context.reply(true)
// Local messages
case AllReceiverIds =>
context.reply(receiverTrackingInfos.filter(_._2.state != ReceiverState.INACTIVE).keys.toSeq)
case StopAllReceivers =>
assert(isTrackerStopping || isTrackerStopped)
stopReceivers()
context.reply(true)
}
...
/** Add new blocks for the given stream */
private def
addBlock
(receivedBlockInfo: ReceivedBlockInfo): Boolean = {
receivedBlockTracker.addBlock(receivedBlockInfo)
}
...
ReceivedBlockInfo类包含了StreamID,Block中记录条数,元数据Metadata,接收Block的存储结果(BlockID和记录数量)
ReceivedBlockInfo:
...
/** Information about blocks received by the receiver */
private[streaming] case class ReceivedBlockInfo(
streamId: Int,
numRecords: Option[Long],
metadataOption: Option[Any],
blockStoreResult: ReceivedBlockStoreResult
) {
...
ReceiverBlockTracker类是addBlock方法的具体实现。
...
/** Add received block. This event will get written to the write ahead log (if enabled). */
def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {
try {
// 调用writeToLog来判断是否需要预写日志
val writeResult =
writeToLog
(BlockAdditionEvent(receivedBlockInfo))
if (writeResult) {
synchronized {
// 将receiverBlockInfo添加到队列中
getReceivedBlockQueue
(receivedBlockInfo.streamId) += receivedBlockInfo
}
logDebug(s"Stream ${receivedBlockInfo.streamId} received " +
s"block ${receivedBlockInfo.blockStoreResult.blockId}")
} else {
logDebug(s"Failed to acknowledge stream ${receivedBlockInfo.streamId} receiving " +
s"block ${receivedBlockInfo.blockStoreResult.blockId} in the Write Ahead Log.")
}
writeResult
} catch {
case NonFatal(e) =>
logError(s"Error adding block $receivedBlockInfo", e)
false
}
}
...
调用ReceiverBlockTracker的writeToLog方法
/** Write an update to the tracker to the write ahead log */
private def writeToLog(record: ReceivedBlockTrackerLogEvent): Boolean = {
if (isWriteAheadLogEnabled) {
logTrace(s"Writing record: $record")
try {
writeAheadLogOption.get.write(ByteBuffer.wrap(Utils.serialize(record)),
clock.getTimeMillis())
true
} catch {
case NonFatal(e) =>
logWarning(s"Exception thrown while writing record: $record to the WriteAheadLog.", e)
false
}
} else {
true
}
}
调用ReceiverBlockTracker的getReceivedBlockQueue方法,其中streamIdToUnallocatedBlockQueues为HashMap,Key为StreamID,Value为ReceivedBlockQueue。而ReceivedBlockQueue 的定义为private type ReceivedBlockQueue = mutable.Queue[ReceivedBlockInfo]
/** Get the queue of received blocks belonging to a particular stream */
private def getReceivedBlockQueue(streamId: Int): ReceivedBlockQueue = {
// 保存到对应StreamID的ReceivedBlockQueue中
streamIdToUnallocatedBlockQueues.getOrElseUpdate(streamId, new ReceivedBlockQueue)
}
ReceivedBlockTracker类,可以从源码中看出,他会记录所有接收到的Block信息,根据需要把Block分配给Batch。如果设置了checkpoint,开启WAL,则会把所有的操作保存到预写日志中,因此当Driver失败后就可以从checkpoint和WAL中恢复ReceiverTracker的状态。
private[streaming] class ReceivedBlockTracker(
conf: SparkConf,
hadoopConf: Configuration,
streamIds: Seq[Int],
clock: Clock,
recoverFromWriteAheadLog: Boolean,
checkpointDirOption: Option[String])
extends Logging {
private type ReceivedBlockQueue = mutable.Queue[ReceivedBlockInfo]
// 存储批处理时刻,分配到的Blocks数据。
private val streamIdToUnallocatedBlockQueues = new mutable.HashMap[Int, ReceivedBlockQueue]
ReceiverBlockTracker类中重要的方法allocateBlocksToBatch。
/**
* Allocate all unallocated blocks to the given batch.
* This event will get written to the write ahead log (if enabled).
*/
def allocateBlocksToBatch(batchTime: Time): Unit = synchronized {
// 判断是否到下一次批处理时刻
if (lastAllocatedBatchTime == null || batchTime > lastAllocatedBatchTime) {
// 从队列中获取ReceivedBlock数据,组装成key为streamId、value为
val streamIdToBlocks = streamIds.map { streamId =>
(streamId, getReceivedBlockQueue(streamId).dequeueAll(x => true))
}.toMap
val allocatedBlocks = AllocatedBlocks(streamIdToBlocks)
// 判断是否预写日志
if (writeToLog(BatchAllocationEvent(batchTime, allocatedBlocks))) {
// 数据存储到timeToAllocatedBlocks中
timeToAllocatedBlocks.put(batchTime, allocatedBlocks)
lastAllocatedBatchTime = batchTime
} else {
logInfo(s"Possibly processed batch $batchTime need to be processed again in WAL recovery")
}
} else {
// This situation occurs when:
// 1. WAL is ended with BatchAllocationEvent, but without BatchCleanupEvent,
// possibly processed batch job or half-processed batch job need to be processed again,
// so the batchTime will be equal to lastAllocatedBatchTime.
// 2. Slow checkpointing makes recovered batch time older than WAL recovered
// lastAllocatedBatchTime.
// This situation will only occurs in recovery time.
logInfo(s"Possibly processed batch $batchTime need to be processed again in WAL recovery")
}
}
该方法是被ReceiverTracker调用的。
/** Allocate all unallocated blocks to the given batch. */
def allocateBlocksToBatch(batchTime: Time): Unit = {
if (receiverInputStreams.nonEmpty) {
receivedBlockTracker.
allocateBlocksToBatch
(batchTime)
}
}
而ReceiverTracker的allocateBlocksToBatch方法是被JobGenerator的generateJobs方法调用的。
/** Generate jobs and perform checkpoint for the given `time`. */
private def generateJobs(time: Time) {
// Set the SparkEnv in this thread, so that job generation code can access the environment
// Example: BlockRDDs are created in this thread, and it needs to access BlockManager
// Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
SparkEnv.set(ssc.env)
Try {
jobScheduler.receiverTracker.allocateBlocksToBatch
(time) // allocate received blocks to batch
graph.generateJobs(time) // generate jobs using allocated block
} match {
case Success(jobs) =>
val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
case Failure(e) =>
jobScheduler.reportError("Error generating jobs for time " + time, e)
}
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}
ReceiverBlockTracker类中重要的方法,getBlocksOfBatch。
/** Get the blocks allocated to the given batch. */
def getBlocksOfBatch(batchTime: Time): Map[Int, Seq[ReceivedBlockInfo]] = synchronized {
timeToAllocatedBlocks.get(batchTime).map { _.streamIdToAllocatedBlocks }.getOrElse(Map.empty)
}
该方法是被ReceiverTracker的getBlocksOfBatch调用。
/** Get the blocks for the given batch and all input streams. */
def getBlocksOfBatch(batchTime: Time): Map[Int, Seq[ReceivedBlockInfo]] = {
receivedBlockTracker.
getBlocksOfBatch
(batchTime)
}
ReceiverTracker的getBlocksOfBatch方法是被ReceiverInputDStream的compute方法调用的。
/**
* Generates RDDs with blocks received by the receiver of this stream. */
override def compute(validTime: Time): Option[RDD[T]] = {
val blockRDD = {
if (validTime < graph.startTime) {
// If this is called for any time before the start time of the context,
// then this returns an empty RDD. This may happen when recovering from a
// driver failure without any write ahead log to recover pre-failure data.
new BlockRDD[T](ssc.sc, Array.empty)
} else {
// Otherwise, ask the tracker for all the blocks that have been allocated to this stream
// for this batch
val receiverTracker = ssc.scheduler.receiverTracker
val blockInfos = receiverTracker.
getBlocksOfBatch
(validTime).getOrElse(id, Seq.empty)
// Register the input blocks information into InputInfoTracker
val inputInfo = StreamInputInfo(id, blockInfos.flatMap(_.numRecords).sum)
ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)
// Create the BlockRDD
createBlockRDD(validTime, blockInfos)
}
}
Some(blockRDD)
}
总结:
Receiver接收到数据,然后合并并存储数据之后,ReceiverSupervisorImpl会把Block的元数据汇报给ReceiverTracker内部的消息通信体ReceiverTrackerEndpoint。
ReceiverTracker接收到Block的元数据信息之后,由ReceivedBlockTracker管理Block的元数据的分配,JobGenerator会将每个Batch,从ReceivedBlockTracker中获取属于该Batch的Block元数据信息来生成RDD。
从设计模式来讲:ReceiverTrackerEndpoint和ReceivedBlockTracker是门面设计模式,内部实际干事情的是ReceivedBlockTracker,外部通信体或者代表者就是ReceiverTrackerEndpoint。
备注:
资料来源于:DT_大数据梦工厂(Spark版本定制班课程)
更多私密内容,请关注微信公众号:DT_Spark
如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580