Spark定制班第11课:Spark Streaming源码解读之Driver中的ReceiverTracker架构

本期内容:

1. ReceiverTracker的架构设计

2. 消息循环系统

3. ReceiverTracker具体实现

  ReceiverTacker类如下,从源码注释可以看出该类的作用。

  管理ReceiverInputDStreams的执行,记录Receiver发来的元数据信息。ReceiverTacker类构造时必须传入StreamingContext对象。

  ReceiverTracker:

private val receivedBlockTracker = new ReceivedBlockTracker(
  ssc.sparkContext.conf,
  ssc.sparkContext.hadoopConfiguration,
  receiverInputStreamIds,
  ssc.scheduler.clock,
  ssc.isCheckpointPresent,
  Option(ssc.checkpointDir)
)

用于记录跟踪Receiver发送来Block的源数据信息。


ReceiverTacker类内部有ReceiverTackerEndpoint这个消息通信体,用于和运行在Executor端的ReceiverSupervisorImpl进行通信,包括Receiver的注册,重启Receiver,清除之前的Block数据,更新限流值,添加Block元数据信息等消息。

ReceiverTracker:


  /** RpcEndpoint to receive messages from the receivers. */
  private class ReceiverTrackerEndpoint(override val rpcEnv: RpcEnv) extends ThreadSafeRpcEndpoint {


RPC消息通信体。


    接下来以接收到来自Executor端的ReceiverSupervisorImpl发来添加元数据信息的AddBlock消息,进行讲解具体的处理流程。

ReceiverTracker:

...
    override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
      // Remote messages
      case RegisterReceiver(streamId, typ, host, executorId, receiverEndpoint) =>
        val successful =
          registerReceiver(streamId, typ, host, executorId, receiverEndpoint, context.senderAddress)
        context.reply(successful)
       // 若启用WAL方式,则在线程池中执行addBlock函数,否则直接执行addBlock函数,回复给ReceiverSupervisorImpl添加源数据是否成功的结果。
      case  AddBlock (receivedBlockInfo) =>
        if (WriteAheadLogUtils.isBatchingEnabled(ssc.conf, isDriver = true)) {
          walBatchingThreadPool.execute(new Runnable {
            override def run(): Unit = Utils.tryLogNonFatalError {
              if (active) {
                context.reply( addBlock (receivedBlockInfo))
              } else {
                throw new IllegalStateException("ReceiverTracker RpcEndpoint shut down.")
              }
            }
          })
        } else {
          context.reply( addBlock (receivedBlockInfo))
        }
      case DeregisterReceiver(streamId, message, error) =>
        deregisterReceiver(streamId, message, error)
        context.reply(true)
      // Local messages
      case AllReceiverIds =>
        context.reply(receiverTrackingInfos.filter(_._2.state != ReceiverState.INACTIVE).keys.toSeq)
      case StopAllReceivers =>
        assert(isTrackerStopping || isTrackerStopped)
        stopReceivers()
        context.reply(true)
    }
...
  /** Add new blocks for the given stream */
  private def  addBlock (receivedBlockInfo: ReceivedBlockInfo): Boolean = {
    receivedBlockTracker.addBlock(receivedBlockInfo)
  }

...


ReceivedBlockInfo类包含了StreamID,Block中记录条数,元数据Metadata,接收Block的存储结果(BlockID和记录数量)

ReceivedBlockInfo:

...

/** Information about blocks received by the receiver */
private[streaming] case class ReceivedBlockInfo(
    streamId: Int,
    numRecords: Option[Long],
    metadataOption: Option[Any],
    blockStoreResult: ReceivedBlockStoreResult
  ) {
...


ReceiverBlockTracker类是addBlock方法的具体实现。

...

  /** Add received block. This event will get written to the write ahead log (if enabled). */
  def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {
    try {
       // 调用writeToLog来判断是否需要预写日志
      val writeResult =  writeToLog (BlockAdditionEvent(receivedBlockInfo))
      if (writeResult) {
        synchronized {
           // 将receiverBlockInfo添加到队列中
           getReceivedBlockQueue (receivedBlockInfo.streamId) += receivedBlockInfo
        }
        logDebug(s"Stream ${receivedBlockInfo.streamId} received " +
          s"block ${receivedBlockInfo.blockStoreResult.blockId}")
      } else {
        logDebug(s"Failed to acknowledge stream ${receivedBlockInfo.streamId} receiving " +
          s"block ${receivedBlockInfo.blockStoreResult.blockId} in the Write Ahead Log.")
      }
      writeResult
    } catch {
      case NonFatal(e) =>
        logError(s"Error adding block $receivedBlockInfo", e)
        false
    }
  }
...


调用ReceiverBlockTracker的writeToLog方法


  /** Write an update to the tracker to the write ahead log */
  private def writeToLog(record: ReceivedBlockTrackerLogEvent): Boolean = {
    if (isWriteAheadLogEnabled) {
      logTrace(s"Writing record: $record")
      try {
         writeAheadLogOption.get.write(ByteBuffer.wrap(Utils.serialize(record)),
           clock.getTimeMillis())
        true
      } catch {
        case NonFatal(e) =>
          logWarning(s"Exception thrown while writing record: $record to the WriteAheadLog.", e)
          false
      }
    } else {
      true
    }
  }


调用ReceiverBlockTracker的getReceivedBlockQueue方法,其中streamIdToUnallocatedBlockQueues为HashMap,Key为StreamID,Value为ReceivedBlockQueue。而ReceivedBlockQueue 的定义为private type ReceivedBlockQueue = mutable.Queue[ReceivedBlockInfo]


  /** Get the queue of received blocks belonging to a particular stream */
  private def getReceivedBlockQueue(streamId: Int): ReceivedBlockQueue = {
     // 保存到对应StreamID的ReceivedBlockQueue中
    streamIdToUnallocatedBlockQueues.getOrElseUpdate(streamId, new ReceivedBlockQueue)
  }


ReceivedBlockTracker类,可以从源码中看出,他会记录所有接收到的Block信息,根据需要把Block分配给Batch。如果设置了checkpoint,开启WAL,则会把所有的操作保存到预写日志中,因此当Driver失败后就可以从checkpoint和WAL中恢复ReceiverTracker的状态。


private[streaming] class ReceivedBlockTracker(
    conf: SparkConf,
    hadoopConf: Configuration,
    streamIds: Seq[Int],
    clock: Clock,
    recoverFromWriteAheadLog: Boolean,
    checkpointDirOption: Option[String])
  extends Logging {

  private type ReceivedBlockQueue = mutable.Queue[ReceivedBlockInfo]

   // 存储批处理时刻,分配到的Blocks数据。
  private val streamIdToUnallocatedBlockQueues = new mutable.HashMap[Int, ReceivedBlockQueue]


ReceiverBlockTracker类中重要的方法allocateBlocksToBatch。


  /**
   * Allocate all unallocated blocks to the given batch.
   * This event will get written to the write ahead log (if enabled).
   */
  def allocateBlocksToBatch(batchTime: Time): Unit = synchronized {
     // 判断是否到下一次批处理时刻
    if (lastAllocatedBatchTime == null || batchTime > lastAllocatedBatchTime) {
      // 从队列中获取ReceivedBlock数据,组装成key为streamId、value为
      val streamIdToBlocks = streamIds.map { streamId =>
          (streamId, getReceivedBlockQueue(streamId).dequeueAll(x => true))
      }.toMap
      val allocatedBlocks = AllocatedBlocks(streamIdToBlocks)
       // 判断是否预写日志
      if (writeToLog(BatchAllocationEvent(batchTime, allocatedBlocks))) {
         // 数据存储到timeToAllocatedBlocks中
        timeToAllocatedBlocks.put(batchTime, allocatedBlocks)
        lastAllocatedBatchTime = batchTime
      } else {
        logInfo(s"Possibly processed batch $batchTime need to be processed again in WAL recovery")
      }
    } else {
      // This situation occurs when:
      // 1. WAL is ended with BatchAllocationEvent, but without BatchCleanupEvent,
      // possibly processed batch job or half-processed batch job need to be processed again,
      // so the batchTime will be equal to lastAllocatedBatchTime.
      // 2. Slow checkpointing makes recovered batch time older than WAL recovered
      // lastAllocatedBatchTime.
      // This situation will only occurs in recovery time.
      logInfo(s"Possibly processed batch $batchTime need to be processed again in WAL recovery")
    }
  }


该方法是被ReceiverTracker调用的。


  /** Allocate all unallocated blocks to the given batch. */
  def allocateBlocksToBatch(batchTime: Time): Unit = {
    if (receiverInputStreams.nonEmpty) {
      receivedBlockTracker. allocateBlocksToBatch (batchTime)
    }
  }


而ReceiverTracker的allocateBlocksToBatch方法是被JobGenerator的generateJobs方法调用的。


  /** Generate jobs and perform checkpoint for the given `time`.  */
  private def generateJobs(time: Time) {
    // Set the SparkEnv in this thread, so that job generation code can access the environment
    // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
    // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
    SparkEnv.set(ssc.env)
    Try {
       jobScheduler.receiverTracker.allocateBlocksToBatch (time) // allocate received blocks to batch
      graph.generateJobs(time) // generate jobs using allocated block
    } match {
      case Success(jobs) =>
        val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
        jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
      case Failure(e) =>
        jobScheduler.reportError("Error generating jobs for time " + time, e)
    }
    eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
  }

        

ReceiverBlockTracker类中重要的方法,getBlocksOfBatch。


  /** Get the blocks allocated to the given batch. */
  def getBlocksOfBatch(batchTime: Time): Map[Int, Seq[ReceivedBlockInfo]] = synchronized {
    timeToAllocatedBlocks.get(batchTime).map { _.streamIdToAllocatedBlocks }.getOrElse(Map.empty)
  }

 该方法是被ReceiverTracker的getBlocksOfBatch调用。


  /** Get the blocks for the given batch and all input streams. */
  def getBlocksOfBatch(batchTime: Time): Map[Int, Seq[ReceivedBlockInfo]] = {
    receivedBlockTracker. getBlocksOfBatch (batchTime)
  }

       

ReceiverTracker的getBlocksOfBatch方法是被ReceiverInputDStream的compute方法调用的。


  /**
   * Generates RDDs with blocks received by the receiver of this stream. */
  override def compute(validTime: Time): Option[RDD[T]] = {
    val blockRDD = {

      if (validTime < graph.startTime) {
        // If this is called for any time before the start time of the context,
        // then this returns an empty RDD. This may happen when recovering from a
        // driver failure without any write ahead log to recover pre-failure data.
        new BlockRDD[T](ssc.sc, Array.empty)
      } else {
        // Otherwise, ask the tracker for all the blocks that have been allocated to this stream
        // for this batch
        val receiverTracker = ssc.scheduler.receiverTracker
        val blockInfos = receiverTracker. getBlocksOfBatch (validTime).getOrElse(id, Seq.empty)

        // Register the input blocks information into InputInfoTracker
        val inputInfo = StreamInputInfo(id, blockInfos.flatMap(_.numRecords).sum)
        ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)

        // Create the BlockRDD
        createBlockRDD(validTime, blockInfos)
      }
    }
    Some(blockRDD)
  }


总结:

Receiver接收到数据,然后合并并存储数据之后,ReceiverSupervisorImpl会把Block的元数据汇报给ReceiverTracker内部的消息通信体ReceiverTrackerEndpoint。

ReceiverTracker接收到Block的元数据信息之后,由ReceivedBlockTracker管理Block的元数据的分配,JobGenerator会将每个Batch,从ReceivedBlockTracker中获取属于该Batch的Block元数据信息来生成RDD。

从设计模式来讲:ReceiverTrackerEndpoint和ReceivedBlockTracker是门面设计模式,内部实际干事情的是ReceivedBlockTracker,外部通信体或者代表者就是ReceiverTrackerEndpoint。


备注:

资料来源于:DT_大数据梦工厂(Spark版本定制班课程)

更多私密内容,请关注微信公众号:DT_Spark

如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580


你可能感兴趣的:(源码,scala,spark,解密,架构)