正剧开始:
星历2016年05月23日 17:06:45, 银河系厄尔斯星球中华帝国江南行省。
[工程师阿伟]正在和[机器小伟]一起做着2009年的江苏省数学高考题]。
这一年的题难度和上一年持平,可能在正卷部分稍难点,但附加卷
就是送分啦,二三环的难度,估计20分钟内可以解完四道附加题。
还是那句话:单道题难度其实只有四环难度,只是因为要解答的题多,拉升了整张卷子的难度。
<span style="font-size:18px;">#题1 def tmp1(): z_1 = 4+29j; z_2 = 6+9j; z = (z_1 - z_2)*(1j); real = z.real; print(real); >>> -20.0</span>
<span style="font-size:18px;">#题2 def tmp2(): A = 30; a = 2; b = 3**0.5; ab = a*b*math.cos(A/180*math.pi); print(ab); >>> 3.0</span>
<span style="font-size:18px;">#题3 def tmp3(): poly = Polynomial(); f_x = [1, -15, -33, 6]; #函数的导数 f_x_der = np.polyder(f_x); #print(f_x_der); descend = poly.inequality(f_x_der, '<'); print(descend); >>> [[-1.0, 11.0]]</span>
2008年以前的排列组合那块的那些难题从此一去不返,变成了这种送分的题。
<span style="font-size:18px;">#题6 def tmp6(): A = [6, 7, 7, 8, 7] B = [6, 7, 6, 7, 9] analyze = alg.DataAnalyze(); A = analyze.format(A); B = analyze.format(B); s2_A = analyze.variance(A); s2_B = analyze.variance(B); print(s2_A, s2_B); >>> 0.4 1.2</span>
这个题比较阴险,主要是一但S>=0 ,T就不再重求,但口算反而不易错。
<span style="font-size:18px;">#题7 def tmp7(): S = 0; T = 1; while (S < 10): S = T*T - S; if (s > 10): break; T = T + 2; print('S, T = {0}, {1}'.format(S, T)); W = S + T; print(W); >>> S, T = 1, 3 S, T = 8, 5 S, T = 17, 5 22</span>
这个就是送分题的典型代表,就这个难度,算一环吧。
<span style="font-size:18px;">#题9 def tmp9(): #曲线C及其导数 curve_C = [1, 0, -10, 3]; curve_C_val = np.poly1d(curve_C); curve_C_der = np.polyder(curve_C); print(curve_C_der); quadratic = np.polyadd(curve_C_der, [-2]); print(quadratic); root = np.roots(quadratic); print(root); for i in range(len(root)): print([root[i], curve_C_val(root[i])]); >>> [ 3 0 -10] [ 3 0 -12] [ 2. -2.] [2.0000000000000004, -8.9999999999999982] [-1.9999999999999996, 15.0]</span>
<span style="font-size:18px;">#题10 def tmp10(): a = (5**0.5-1)/2; b = [[-1, 1], [2, 3], [-3, -2]]; for i in range(len(b)): f_m = a**(b[i][0]); f_n = a**(b[i][1]); print('{0} -- {1}, {2}'.format(i, f_m, f_n)); >>> 0 -- 1.6180339887498947, 0.6180339887498949 1 -- 0.3819660112501052, 0.23606797749978975 2 -- 4.236067977499789, 2.6180339887498945</span>
<span style="font-size:18px;">#题13 def tmp13(): #假定 a, b = 2, 1; a2 = a*a; b2 = b*b; c = (a2-b2)**0.5; #点 A_1 = [-a, 0]; B_2 = [0, b]; B_1 = [0, -b]; F = [c, 0]; #求T点 T = geo.crossPointOfTwoLine([A_1, B_2], [B_1, F]); print(T); #[25.856406460551007, 13.928203230275503] #如果已知a, b倒是可以求出交点Y, 现在全是代数 #真不好求,先放着吧 </span>
<span style="font-size:18px;">#题14 def tmp14(): b = [-53, -23, 19, 37, 82]; b = [19, -23, 37, -53, 82]; for i in range(len(b)): b[i] = b[i] - 1; print(b); #[18, -24, 36, -54, 81] for i in range(len(b) - 1): print(b[i+1]/b[i]); # q = -1.5 </span>
<span style="font-size:18px;">#题15 def tmp15(): val = [['A_[c]', 'cosa'], ['A_[s]', 'sina'], ['B_[c]', 'cosb'], ['B_[s]', 'sinb']]; a = alg.strformat(['4A_[c]', 'A_[s]']); b = alg.strformat(['B_[s]', '4B_[c]']); c = alg.strformat(['B_[c]', '-4B_[s]']); d = alg.strformat(['-2']); #e = b - 2c e = alg.stradd(b, alg.strdot(c, d)); e = alg.strcombine(e); print(e); #['(9)*B_[s]^[1]', '(2)*B_[c]^[1]'] #求a 与(b-2c)的乘积 f = alg.strdot(a, e); f = alg.strcombine(f); print(f); #['(36)*A_[c]^[1]*B_[s]^[1]', '(8)*A_[c]^[1]*B_[c]^[1]', #'(9)*A_[s]^[1]*B_[s]^[1]', '(2)*A_[s]^[1]*B_[c]^[1]'] #得出了一个关系式,但离解决还有好几环</span>
<span style="font-size:18px;">#题17 def tmp17(): a1 = alg.strformat(['a_[1]']); a2 = alg.strformat(['a_[1]', 'd']); a3 = alg.strformat(['a_[1]', '2d']); a4 = alg.strformat(['a_[1]', '3d']); a5 = alg.strformat(['a_[1]', '4d']); a6 = alg.strformat(['a_[1]', '5d']); a7 = alg.strformat(['a_[1]', '6d']); #第一个等式 f_1 = alg.strcombine(alg.strpow_n(a2, 2)+ alg.strpow_n(a3, 2)); f_2 = alg.strcombine(alg.strpow_n(a4, 2)+alg.strpow_n(a5, 2)); f_3 = alg.strcombine(alg.stradd(f_1, alg.minus(f_2))); print(f_1); print(f_2); print(f_3); #这个式子是:['(0)', '(-8)*a_[1]^[1]*d^[1]', '(-20)*d^[2]'] #所以a_[1] = -2.5d #第二个式子 sum_ = alg.strcombine(a1+a2+a3+a4+a5+a6+a7); print(sum_); #['(7)*a_[1]^[1]', '(21)*d^[1]'] = 7 #所以2d = 7, d = -5 a_[1] = 2 >>> ['(2)*a_[1]^[2]', '(6)*a_[1]^[1]*d^[1]', '(5)*d^[2]'] ['(-2)*a_[1]^[2]', '(-14)*a_[1]^[1]*d^[1]', '(-25)*d^[2]'] ['(0)', '(-8)*a_[1]^[1]*d^[1]', '(-20)*d^[2]'] ['(7)*a_[1]^[1]', '(21)*d^[1]']</span>
下面就是送分的附加题了:
<span style="font-size:18px;">#题21 def tmp21B(): A = [[3, 2], [2, 1]]; B = np.linalg.inv(A); print(B); C = np.dot(A, B); print(C); >>> [[-1. 2.] [ 2. -3.]] [[ 1. 0.] [ 0. 1.]] </span>
这些题每个的分数都好拿,估计考生郁闷的是时间不够。
下面贴一下工具:
<span style="font-size:18px;">#一般要包含这几个模块(都写出来了) import math; import geo; import alg; import numpy.f2py import numpy.random import numpy.polynomial import numpy.ma import numpy.distutils import numpy.compat import numpy as np; import numpy.linalg import numpy.matrixlib import numpy.fft import numpy.distutils.fcompiler import numpy.core import numpy.distutils.command </span>
<span style="font-size:18px;">### # @usage 代数式字符串的运算 # @author mw # @date 2016年05月17日 星期二 16:48:56 # @param # @return # ### #计算代数式用, 传入的是单项式,返回coef*expr的形式 def strmono(s): #'x', '-x', '2x', '-2x', '-2x^[2]', '3x_[2]^[3]', '-3x_[2]^[3]' stmp = s; size = len(stmp); alphaIndex = 0; signIndex = 0; for i in range(size): if (stmp[i].isalpha()): alphaIndex = i; break; if (i >= size-1): alphaIndex = i+1; if (stmp[0] == '-'): signIndex = 1; if (signIndex >= alphaIndex): return monoformat('(-1)*'+stmp[alphaIndex:]); else: if alphaIndex >= size: return monoformat('(-'+stmp[signIndex:alphaIndex]+')'); return monoformat('(-'+stmp[signIndex:alphaIndex]+')*'+stmp[alphaIndex:]); elif (stmp[0] == '('): #已经格式化的情况,这种情况输入时是(coef)*expr return monoformat(stmp); else: signIndex = 0; if (signIndex >= alphaIndex): return monoformat('(1)*'+stmp[alphaIndex:]); else: if alphaIndex >= size: return monoformat('('+stmp[signIndex:alphaIndex]+')'); return monoformat('('+stmp[signIndex:alphaIndex]+')*'+stmp[alphaIndex:]); #计算两个单项式的乘积 def strmul(mono1, mono2): #这个处理是保证每个单项式统一格式(coef)*expr ''' if (mono1[0] != '(' or mono2[0] != '('): #如果没有规格化,那么就做一下 mono1 = strmono(mono1); mono2 = strmono(mono2); ''' stmp1 = mono1; stmp2 = mono2; #乘号的位置 signIndex1 = stmp1.find('*'); signIndex2 = stmp2.find('*'); if (signIndex1 == -1): coef1 = stmp1; expr1 = ''; else: coef1 = stmp1[:signIndex1]; expr1 = stmp1[signIndex1+1:]; if (signIndex2 == -1): coef2 = stmp2; expr2 = ''; else: coef2 = stmp2[:signIndex2]; expr2 = stmp2[signIndex2+1:]; coef = coef1+'*'+coef2; if (signIndex1 == -1 or signIndex2 == -1): expr = expr1+expr2; else: expr = expr1+'*'+expr2; if (expr == ''): return '('+str(round(eval(coef), 6))+')'; return '('+str(round(eval(coef), 6))+')*'+expr; #计算两个单项式的商 def strdiv(s1, s2): #这个处理是保证每个单项式统一格式(coef)*expr stmp1 = strmono(s1); stmp2 = strmono(s2); #乘号的位置 signIndex1 = stmp1.find('*'); signIndex2 = stmp2.find('*'); if (signIndex1 == -1): coef1 = stmp1; expr1 = ''; else: coef1 = stmp1[:signIndex1]; expr1 = stmp1[signIndex1+1:]; if (signIndex2 == -1): coef2 = stmp2; expr2 = ''; else: coef2 = stmp2[:signIndex2]; expr2 = stmp2[signIndex2+1:]; coef = coef1+'/'+coef2; if (signIndex1 == -1 and signIndex2 != -1): expr = '('+expr2+')^[-1]'; elif (signIndex1 == -1 or signIndex2 == -1): expr = expr1+expr2; else: expr = expr1+'/'+expr2; if (expr == ''): return '('+str(round(eval(coef), 6))+')'; return '('+str(round(eval(coef), 6))+')*'+expr; #找一个字符串中所有待查找子串的位置,返回位置阵列 def findall(string, sub): size = len(string); index = []; cur = string.find(sub); index.append(cur) while (index[-1] != -1): cur = string.find(sub, index[-1]+1); index.append(cur); return index; #计算单项式的乘方, s^n def strpow(s, n): stmp = strmono(s); signIndex = stmp.find('*'); if (signIndex == -1): coef = stmp+'**'+str(n); expr = ''; return '('+str(round(eval(coef), 6))+')'; else: coef = stmp[:signIndex]+'**'+str(n); expr = '('+stmp[signIndex+1:]+')^['+str(n)+']'; return '('+str(round(eval(coef), 6))+')*'+expr; #计算代数式用,传入的两个阵列都具有['s1', 's2', ..., 'sn']这样的格式 def strdot(array1, array2): size1 = len(array1); size2 = len(array2); result = []; for i in range(size1): for j in range(size2): result.append(strmul(array1[i], array2[j])); return result; #把格式化后的单项式分解成[coef, expr]对组的形式 def explodemono(mono): stmp = mono; #乘号的位置 signIndex = stmp.find('*'); if (signIndex == -1): coef = stmp; expr = ''; else: coef = stmp[:signIndex]; expr = stmp[signIndex+1:]; return [coef, expr]; #合并同类项,传入的阵列具有['s1', 's2', ..., 'sn']这样的格式 def strcombine(array): size = len(array); explode = []; for i in range(size): #这里传入的阵列已经是规格化后的了,否则要加一层strmono处理。 explode.append(explodemono(monocombine(array[i]))); result = []; for i in range(size): size_1 = len(result); if size_1 <= 0: result.append(explode[i]); else: for j in range(size_1): if result[j][1] == explode[i][1]: result[j][0] = result[j][0] + '+' + explode[i][0]; break; if j >= size_1-1: result.append(explode[i]); result_1 = []; size_1 = len(result); for j in range(size_1): result[j][0] = str(round(eval(result[j][0]), 6)); if (result[j][0] == '0'): result_1.append('(0)'); else: tmps = result[j][1]; if (tmps == ''): result_1.append('('+result[j][0]+')'); else: result_1.append('('+result[j][0]+')*'+result[j][1]); return result_1; #指数为正整数的乘方 def strpow_n(array, n): #计算 result = []; if (n == 1): result = array; elif (n == 2): result = strdot(array, array); elif (n >= 3): tmp = strdot(array, array); n -= 2; while (n > 0): result = strdot(tmp, array); tmp = result; n -= 1; return result; #阵列取负 def minus(array): for i in range(len(array)): if array[i][1] == '-': #array[i][0]是'(, 这是规范 array[i] = array[i][0]+array[i][2:]; else: array[i] = array[i][0]+'-'+array[i][1:]; return array; ### # @usage 代数式运算 # @author mw # @date 2016年05月18日 星期三 07:37:01 # @param # @return # ### #两个多项式相加,合并同类项不在此进行 def stradd(array1, array2): #两个多项式相加,这里直接返回数组的相加 return array1+array2; #为了简便输入,不要求输入规范化代数式,(coef)*expr形式 #所以在此对多项式进行规范化 #至于单项式规范化,调用strmono函数即可 def strformat(array): for i in range(len(array)): array[i] = strmono(array[i]); return array; #把单项式完全格式化,使经过运算的没运算过的都具有统一的格式 def monoformat(mono): #规范化单项式,保证任意两个参数之间都添加一个'*'号 #这是为了和经过代数式乘法运算之后的格式统一 chars = len(mono); s = ''; for i in range(chars-1): if mono[i] == ']' and mono[i+1].isalpha(): s += mono[i]+'*'; elif mono[i].isalpha() and mono[i+1].isalpha(): s += mono[i]+'*'; #这里还有一个死角,就是下标或指数如果是用的代数式,并且是多项相乘 #可能会有一点问题,暂时不考虑了 else: s += mono[i]; s += mono[-1]; return s; #把单项式炸开,这里的单项式已经达到最大规范化,是(coef)*x_[1]^[2]*y_[2]^[2]这种结构形式了 #'*'号是要作为分隔符的,不可缺少 def explodemono_2(mono): part = mono.split('*'); #每个部分的[前部,指数部]的对组 map_ = []; for i in range(len(part)): expIndex = part[i].find('^'); if (expIndex != -1): map_.append([part[i][:expIndex], part[i][expIndex:]]); else: s = part[i]; #系数 if s[0] == '(': map_.append([part[i], '']); #代数式 else: map_.append([part[i], '^[1]']); map_ = sorted(map_, key = lambda a : a[0]); return map_; #单项式同类项合并 def monocombine(mono): map_ = explodemono_2(mono); size = len(map_); result = []; for i in range(size): size_1 = len(result); if (size_1 <= 0): result.append(map_[i]); else: for j in range(size_1): if result[j][0] == map_[i][0]: #双方的中括号位置 #由于规范化后的原因,这个括号是一定有的 p1 = result[j][1].find('['); p2 = result[j][1].find(']'); p3 = map_[i][1].find('['); p4 = map_[i][1].find(']'); s = result[j][1][p1+1:p2]+'+'+map_[i][1][p3+1:p4]; size_2 = len(s); for k in range(size_2): if s[k].isalpha(): break; #如果没有字符参数,可以计算出结果,就计算 if (k >= size_2-1): s = str(eval(s)); result[j][1] = '^['+s+']'; break; if (j >= size_1-1): result.append(map_[i]); size_1 = len(result); s = ''; for i in range(size_1): if (i > 0 and result[i][1] == '^[0]'): continue; s += result[i][0]+result[i][1]; if (i < size_1-1): s += '*'; return s; #排列公式 def arrangement(n, m): if n < m: return arrangement(m, n); else: factorial = 1; for i in range(n, n-m, -1): factorial*=i; return factorial; #组合公式 def combination(n, m): if (n < m): return combination(m, n); else: return arrangement(n, m)/arrangement(m,m); #解一元二次方程 class Equation(): def quadratic(self, array): a, b, c = array[0], array[1], array[2]; if (a < 0): a, b, c = -a, -b, -c; p = q = delta = 0; x1 = x2 = 0; s = ''; if (a == 0): return [-c/b]; else: delta = b**2 - 4*a*c; if (delta < 0): real = -b/(2*a); image = (-delta)**0.5; return [complex(real, -image), complex(real, image)]; else: if (abs(delta) < 1e-6): x1 = x2 = -b/(2*a); else: x1 = (-b-delta**0.5)/(a*2); x2 = (-b+delta**0.5)/(a*2); return [x1, x2]; ### # @usage 数据的集中分析类 # @author mw # @date 2016年05月20日 星期五 10:06:47 # @param # @return # ### class DataAnalyze(): #由于numpy的方法接口只对narray开放,所以,数组先要格式化一下 #对于自己的数组而言,这个方法是必须要先调用一下,才能使用numpy方法的 def format(self, array): return numpy.array(array); #求和 def sum(self, array): return array.sum(); #均值 def average(self, array): return self.sum(array)/len(array); #方差 def variance(self, array): array_ = array*array; sum_ = array_.sum(); aver_ = self.average(array); result = sum_/len(array) - aver_**2; return result; #标准差 def RMS(self, array): return (self.variance)**0.5; </span>
这个是多项式的,比较可有可无:
<span style="font-size:18px;">### # @usage 多项式运算相关 # @author mw # @date 2016年05月23日 星期一 09:36:12 # @param # @return # ### class Polynomial(): #格式化打印 def printPoly(self, array, variable = 'x'): len_ = len(array); poly = []; for i in range(len_): if (i < len_ -1): s = '('+str(array[i])+')*'+variable+'^['+str(len_-1-i)+']'; else: s = '('+str(array[i])+')'; poly.append(s); s = ''; for i in range(len_): s += poly[i]; if (i < len_ - 1): s += '+'; print(s); #格式:(1)*x^[3]+(2)*x^[2]+(-3)*x^[1]+(4) return poly; #解不等式 def inequality(self, array, symbol = '<'): #方程的根 roots = np.roots(array); roots = sorted(roots); #print(roots); len_ = len(roots); p = np.poly1d(array); #符合要求的区间 section = []; if (symbol == '<'): if (p(roots[0]-1) < 0): section.append(['-inf', roots[0]]); if (p(roots[len_-1]+1))< 0: section.append([roots[len_-1], 'inf']); elif (symbol == '>'): if (p(roots[0]-1)) > 0: section.append(['-inf', roots[0]]); if (p(roots[len_-1]+1)) > 0: section.append([roots[len_-1], 'inf']); for i in range(len_-1): mid = (roots[i]+roots[i+1])/2; if (symbol == '<'): if p(mid) < 0: section.append([roots[i], roots[i+1]]); elif (symbol == '>'): if p(mid) > 0: section.append([roots[i], roots[i+1]]); return section; #计算代数式的值 #代数式具有[(coef)*expr^[exp], ...]这种形式 #要加载自制的alg模块 def algValue(self, stralg, valueTable): #多项式的项数 len_s = len(stralg); #参数对照表的项数 #参数对照表具有[['x', '1'], ['y', '3']]这样的形式 len_v = len(valueTable); for i in range(len_s): s = stralg[i]; for j in range(len_v): s = s.replace(valueTable[j][0], str(valueTable[j][1])); s = s.replace('^[', '**('); s = s.replace(']', ')'); stralg[i] = eval(s); return stralg; </span>
本节到此结束,欲知后事如何,请看下回分解。