LeetCode题解--10. Regular Expression Matching

链接

LeetCode题目:https://leetcode.com/problems/regular-expression-matching/

GitHub代码:https://github.com/gatieme/LeetCode/tree/master/010-RegularExpressionMatching

CSDN题解:http://blog.csdn.net/gatieme/article/details/51049244

题意

Implement regular expression matching with support for ‘.’ and ‘*’.

‘.’ Matches any single character.
‘*’ Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

The function prototype should be:
bool isMatch(const char *s, const char *p)

Some examples:
isMatch("aa","a") → false
isMatch("aa","aa") → true
isMatch("aaa","aa") → false
isMatch("aa", "a*") → true
isMatch("aa", ".*") → true
isMatch("ab", ".*") → true
isMatch("aab", "c*a*b") → true

正则表达式匹配,
. 匹配任何一个简单字符
*可以匹配零个或者多个任意字符
判断给定的两个字符是否匹配

分析

  • 偷懒的方法是直接用语言自带的正则实现。(Python 又是一句话 =w=)

  • 用 DFS 的方法

  • 可以用 DP 的方法

用数组 DP :dp[i][j] 表示 s[0..i] 和 p[0..j] 是否 match,当 p[j] != ‘‘,b[i + 1][j + 1] = b[i][j] && s[i] == p[j] ,当 p[j] == ‘’ 要再分类讨论,具体可以参考 DP C++,还可以压缩下把 dp 降成一维:参考这里
用记忆化,就是把算过的结果保存下来,下次就不用再算了

Python

import re

class Solution:
    # @return a boolean
    def isMatch(self, s, p):
        return re.match('^' + p + '$', s) != None

# debug
s = Solution()
print s.isMatch("aa", "a*")

分治–类似与深度优先搜索DFS

我们会分治搜索的方法来查看,

  • 考虑特殊情况即*s字符串或者*p字符串结束。

    1. s字符串结束,要求*p也结束或者间隔‘’ (例如p=”a*b*c……”),否则无法匹配

    2. *s字符串未结束,而*p字符串结束,则无法匹配

  • *s字符串与*p字符串均未结束

    1. (p+1)字符不为’‘,则只需比较s字符与*p字符,若相等则递归到(s+1)字符串与*(p+1)字符串的比较,否则无法匹配。

    2. (p+1)字符为’‘,则p字符可以匹配*s字符串中从0开始任意多(记为i)等于*p的字符,然后递归到(s+i+1)字符串与*(p+2)字符串的比较,

只要匹配一种情况就算完全匹配。

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>



#define __tmain main

///if p[j+1] == '*' -> (i + 1, j + 1)
///else if p[i] == p[j] -> (i + 1, j + 2) or (i, j+2)
///else -> (i, j+2)

bool isMatch(const char *s, const char *p)
{
    if (*p == '\0')         // 正则p到底末尾时
    {
        return !(*s);       // 如果串s页到达末尾,则匹配成功
    }

    int slen = strlen(s), plen = strlen(p);

    if (plen == 1           // 如果正则串只有一个长度
    || *(p + 1) != '*')     // 如果匹配×
    {
        return slen && (p[0] == '.' || *s == *p)
            && isMatch(s + 1, p + 1);
    }
    else
    {
        while (*s != '\0' && (*p == '.' || *s == *p))
        {

            if (isMatch(s++, p + 2))
            {
                return true;
            }
        }

    }

    return isMatch(s, p + 2);

}


动态规划

dp[i][j] 表示 s[0..i] 和 p[0..j] 是否 match,

  • 当 p[j] != ‘*’,b[i + 1][j + 1] = b[i][j] && s[i] == p[j] ,

  • 当 p[j] == ‘*’ 要再分类讨论,具体可以参考 DP C++,还可以压缩下把 dp 降成一维:

下面是那位大神的代码

class Solution {
public:
    bool isMatch(string s, string p) {
        /** * f[i][j]: if s[0..i-1] matches p[0..j-1] * if p[j - 1] != '*' * f[i][j] = f[i - 1][j - 1] && s[i - 1] == p[j - 1] * if p[j - 1] == '*', denote p[j - 2] with x * f[i][j] is true iff any of the following is true * 1) "x*" repeats 0 time and matches empty: f[i][j - 2] * 2) "x*" repeats >= 1 times and matches "x*x": s[i - 1] == x && f[i - 1][j] * '.' matches any single character */
        int m = s.size(), n = p.size();
        vector<vector<bool>> f(m + 1, vector<bool>(n + 1, false));

        f[0][0] = true;
        for (int i = 1; i <= m; i++)
            f[i][0] = false;
        // p[0.., j - 3, j - 2, j - 1] matches empty iff p[j - 1] is '*' and p[0..j - 3] matches empty
        for (int j = 1; j <= n; j++)
            f[0][j] = j > 1 && '*' == p[j - 1] && f[0][j - 2];

        for (int i = 1; i <= m; i++)
            for (int j = 1; j <= n; j++)
                if (p[j - 1] != '*')
                    f[i][j] = f[i - 1][j - 1] && (s[i - 1] == p[j - 1] || '.' == p[j - 1]);
                else
                    // p[0] cannot be '*' so no need to check "j > 1" here
                    f[i][j] = f[i][j - 2] || (s[i - 1] == p[j - 2] || '.' == p[j - 2]) && f[i - 1][j];

        return f[m][n];
    }
};

你可能感兴趣的:(LeetCode,github,算法,正则表达式,面试)