PDF (English) | Statistics | Forum |
Time Limit: 2 second(s) | Memory Limit: 32 MB |
A bit is a binary digit, taking a logical value of either 1 or 0 (also referred to as "true" or "false" respectively). And every decimal number has a binary representation which is actually a series of bits. If a bit of a number is 1 and its next bit is also 1 then we can say that the number has a 1 adjacent bit. And you have to find out how many times this scenario occurs for all numbers up to N.
Examples:
Number Binary Adjacent Bits
12 1100 1
15 1111 3
27 11011 2
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case contains an integer N (0 ≤ N < 231).
For each test case, print the case number and the summation of all adjacent bits from 0 to N.
Sample Input |
Output for Sample Input |
7 0 6 15 20 21 22 2147483647 |
Case 1: 0 Case 2: 2 Case 3: 12 Case 4: 13 Case 5: 13 Case 6: 14 Case 7: 16106127360 |
题意:输入n,要求从0到n的所有数的二进制数里面总共有多少“11”。
思路:将输入的数转化为二进制之后进行数位dp。dp[i][j][k]表示i位数前一位是j(由于二进制只可能是0或1)已经存在k个11的总数。
#include <iostream> #include <stdio.h> #include <stdlib.h> #include<string.h> #include<algorithm> #include<math.h> #include<queue> #include<stack> using namespace std; typedef long long ll; ll dp[40][2][40]; int digit[40]; ll dfs(int pos,int pre,int st,bool limit) { if(pos==0)return st; if(!limit&&dp[pos][pre][st]!=-1)return dp[pos][pre][st]; ll ans=0; int end=limit?digit[pos]:1; for(int i=0; i<=end; i++) ans+=dfs(pos-1,i,st+(pre&&i),limit&&(i==end)); if(!limit) dp[pos][pre][st]=ans; return ans; } ll get(int x) { int bj=0; while(x) digit[++bj]=x%2,x/=2; return dfs(bj,0,0,1); } int main() { memset(dp,-1,sizeof(dp)); int t,o=1; scanf("%d",&t); while(t--) { int n; scanf("%d",&n); printf("Case %d: %lld\n",o++,get(n));///light oj里面只能用lld } return 0; }