正剧开始:
星历2016年05月18日 14:57:54, 银河系厄尔斯星球中华帝国江南行省。
[工程师阿伟]正在和[机器小伟]一起做着2002年的江苏省数学高考题]。
<span style="font-size:18px;">#题1 >>> 0.5000110003630133 def tmp1(): d = geo.plDistance2D([1,0], [[0,0], [1.732, 1]]); print(d);</span>
<span style="font-size:18px;">#题2 def tmp2(): a = (0.5+0.866j)**3; print(a); >>> (-0.9999339999999999+3.8104000000038774e-05j)</span>
<span style="font-size:18px;">//题3 if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 1, spaceY = 1; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = []; //需要显示的函数说明 //希腊字母表(存此用于Ctrl C/V //ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ //αβγδεζηθικλμνξοπρστυφχψω var f1 = '(1+x)(1-|x|)', f2 = '', f3 = '', f4 = ''; //(1-(x+2)^2)^0.5 for (var x = xS; x <= xE; x+=0.2) { a.push([x, taskFun(x)]); } //存放临时数组 var tmp = []; //显示变换 if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -90, 200); } } function taskFun(x) { return (1+x)*(1-Math.abs(x)); }</span>
<span style="font-size:18px;">//题4 if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 1, spaceY = 1; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = []; //需要显示的函数说明 //希腊字母表(存此用于Ctrl C/V //ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ //αβγδεζηθικλμνξοπρστυφχψω var f1 = 'sinx-cosx', f2 = '', f3 = '', f4 = ''; //(1-(x+2)^2)^0.5 for (var x = 0; x <= Math.PI*2; x+=0.2) { a.push([x, taskFun(x)]); } //存放临时数组 var tmp = []; //显示变换 if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -90, 200); } } } function taskFun(x) { return Math.sin(x) - Math.cos(x); }</span>
<span style="font-size:18px;">#题5 def tmp5(): M = []; N = []; for i in range(-10, 10, 1): M.append(i/2+1/4); N.append(i/4+1/2); print('M=', M); print('N=', N); setM = set(M); setN = set(N); print(setM.intersection(setN)); >>> M= [-4.75, -4.25, -3.75, -3.25, -2.75, -2.25, -1.75, -1.25, -0.75, -0.25, 0.25, 0.75, 1.25, 1.75, 2.25, 2.75, 3.25, 3.75, 4.25, 4.75] N= [-2.0, -1.75, -1.5, -1.25, -1.0, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75] {-0.75, -0.25, 2.75, 1.75, 0.25, 1.25, 2.25, -1.25, 0.75, -1.75} </span>
<span style="font-size:18px;">//题6 if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 2; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = []; //需要显示的函数说明 //希腊字母表(存此用于Ctrl C/V //ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ //αβγδεζηθικλμνξοπρστυφχψω var f1 = 'x=t^[2], y=2t', f2 = '', f3 = '', f4 = ''; //(1-(x+2)^2)^0.5 for (var x = xS; x <= xE; x+=0.2) { a.push([x*x, 2*x]); } //存放临时数组 var tmp = []; //显示变换 if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -180, 200); } } </span>
<span style="font-size:18px;">#题7 def tmp7(): s = ['2/3pr^[3]','1/3pr^[2]h']; #h = 2r thita = 2*math.atan(0.5); print(math.cos(thita)); >>> 0.6000000000000001</span>
<span style="font-size:18px;">//题10 if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 2; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = []; //需要显示的函数说明 //希腊字母表(存此用于Ctrl C/V //ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ //αβγδεζηθικλμνξοπρστυφχψω var f1 = 'y = 1 - 1/(x-1)', f2 = '', f3 = '', f4 = ''; var y = 0; //(1-(x+2)^2)^0.5 for (var x = xS; x <= xE; x+=0.2) { y = taskFun(x); if (y != Number.NaN) { a.push([x, y]); } } //存放临时数组 var tmp = []; //显示变换 if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -180, 200); } } } function taskFun(x) { return 1- 1/(x-1); } </span>
<span style="font-size:18px;">#题11 def tmp11(): #从正方体中选两个相对的面 step1 = 3; #每组对面有各个中间面 step2 = 4; result = step1 * step2; print(result); >>> 12</span>
<span style="font-size:18px;">#题12 def tmp12(): print(95993*(1.073)**4); >>> 127244.3338498723</span>
<span style="font-size:18px;">#题14 def tmp14(): #5/k-1 = 4 =>k =1</span>
<span style="font-size:18px;">#题15 def tmp15(): a = ['x^[2]', '1']; b = ['x', '-2']; a = strformat(a); b = strformat(b); #乘方7次 c = strpow_n(b, 7); #整理 d = strcombine(c); #多项式乘法一次 e = strdot(a, d); #整理 f = strcombine(e); print(f); >>> ['(1)*x^[9]', '(-14)*x^[8]', '(85)*x^[7]', '(-294)*x^[6]', '(644)*x^[5]', '(-952)*x^[4]', '(1008)*x^[3]', '(-800)*x^[2]', '(448)*x^[1]', '(-128)'] </span>
<span style="font-size:18px;">#题16 def tmp16(): a = [1, 2, 1/2, 3, 1/3, 4, 1/4]; sum_ = 0; for i in range(len(a)): sum_ += f(a[i]); print(sum_); def f(x): return x**2/(1+x**2); </span>
<span style="font-size:18px;">#题20 def tmp20(): #a_[1] = 30; #a_[n] = a_[n-1]*0.94+x q = alg.strformat(['0.94']); x = alg.strformat(['x']); a_1 = alg.strformat(['30']); a_2 = alg.stradd(alg.strdot(q, a_1), x); a_2 = alg.strcombine(a_2); for i in range(25): a_2 = alg.stradd(alg.strdot(q, a_2), x); a_2 = alg.strcombine(a_2); print(a_2); #13x+6<60 x<3 #x 是以1为首项, 0.94为公比的等比数列的前N项和 Sx = 1/0.06 = 16; #x < 60/16 #这是25年的数据 >>> ['(26.508)', '(1.94)*x^[1]'] ['(24.91752)', '(2.8236)*x^[1]'] ['(23.422469)', '(3.654184)*x^[1]'] ['(22.017121)', '(4.434933)*x^[1]'] ['(20.696094)', '(5.168837)*x^[1]'] ['(19.454328)', '(5.858707)*x^[1]'] ['(18.287068)', '(6.507185)*x^[1]'] ['(17.189844)', '(7.116754)*x^[1]'] ['(16.158453)', '(7.689749)*x^[1]'] ['(15.188946)', '(8.228364)*x^[1]'] ['(14.277609)', '(8.734662)*x^[1]'] ['(13.420952)', '(9.210582)*x^[1]'] ['(12.615695)', '(9.657947)*x^[1]'] ['(11.858753)', '(10.07847)*x^[1]'] ['(11.147228)', '(10.473762)*x^[1]'] ['(10.478394)', '(10.845336)*x^[1]'] ['(9.84969)', '(11.194616)*x^[1]'] ['(9.258709)', '(11.522939)*x^[1]'] ['(8.703186)', '(11.831563)*x^[1]'] ['(8.180995)', '(12.121669)*x^[1]'] ['(7.690135)', '(12.394369)*x^[1]'] ['(7.228727)', '(12.650707)*x^[1]'] ['(6.795003)', '(12.891665)*x^[1]'] ['(6.387303)', '(13.118165)*x^[1]'] ['(6.004065)', '(13.331075)*x^[1]'] </span>
<span style="font-size:18px;">//题21 if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 2; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = []; //需要显示的函数说明 //希腊字母表(存此用于Ctrl C/V //ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ //αβγδεζηθικλμνξοπρστυφχψω var f1 = 'y = x^2+|x-2|+1', f2 = 'y = x^2+|x+2|+1', f3 = '', f4 = ''; var y1 = y2 = 0; //(1-(x+2)^2)^0.5 for (var x = xS; x <= xE; x+=0.2) { y1 = x*x+Math.abs(x-2)+1; y2 = x*x+Math.abs(x+2)+1; if (y1 != Number.NaN) { a.push([x, y1]); } if (y2 != Number.NaN) { b.push([x, y2]); } } //存放临时数组 var tmp = []; //显示变换 if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -90, 200); } if (b.length > 0) { b = transform.scale(transform.translate(b, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(b); shape.pointDraw(tmp, 'blue'); tmp = [].concat(b); shape.multiLineDraw(tmp, 'blue'); plot.setFillStyle('blue'); plot.fillText(f2, 100, -120, 200); } } </span>
好了,这次题就做到这里,这张试卷的难度比前两年的要低上2环。
先说明一下这个环的意思:
你找到一把钥匙,开了一个宝箱,然后拿走宝物,这叫一环难度;
这把钥匙开了一个宝箱,里面没有宝物,只有另一把钥匙,
你再找一个宝箱开了,宝物在里面,你拿到手,这叫二环难度;
以此类推啦,这张试卷的最难的题也就四环难度,前两年的达到六环。
一般两环难度以下是送分题,大概30到40分,三环难度的再给30分。
四环难度要是给个50分,这张卷子就已经比较厚道了。然后是五环难度,
一般出到六环难度就是伤天害理的感觉了。
前两年的卷子大致是:二环20分,三环20分,四环40分,五环40分,然后是六环,
然后陷阱还多,明明一个四环题,伪装成两环的,特别阴险,这就是江苏卷的特色。
这张是很温和的啦,运算量也不大。
这次[工程师阿伟]终于把早就想做的那个代数式运算工具搞出来了,这可是很好玩的一个东西。
<span style="font-size:18px;">### # @usage 代数式字符串的运算 # @author mw # @date 2016年05月17日 星期二 16:48:56 # @param # @return # ### #计算代数式用, 传入的是单项式,返回coef*expr的形式 def strmono(s): #'x', '-x', '2x', '-2x', '-2x^[2]', '3x_[2]^[3]', '-3x_[2]^[3]' stmp = s; size = len(stmp); alphaIndex = 0; signIndex = 0; for i in range(size): if (stmp[i].isalpha()): alphaIndex = i; break; if (i >= size-1): alphaIndex = i+1; if (stmp[0] == '-'): signIndex = 1; if (signIndex >= alphaIndex): return monoformat('(-1)*'+stmp[alphaIndex:]); else: if alphaIndex >= size: return monoformat('(-'+stmp[signIndex:alphaIndex]+')'); return monoformat('(-'+stmp[signIndex:alphaIndex]+')*'+stmp[alphaIndex:]); else: signIndex = 0; if (signIndex >= alphaIndex): return monoformat('(1)*'+stmp[alphaIndex:]); else: if alphaIndex >= size: return monoformat('('+stmp[signIndex:alphaIndex]+')'); return monoformat('('+stmp[signIndex:alphaIndex]+')*'+stmp[alphaIndex:]); #计算两个单项式的乘积 def strmul(mono1, mono2): #这个处理是保证每个单项式统一格式(coef)*expr ''' if (mono1[0] != '(' or mono2[0] != '('): #如果没有规格化,那么就做一下 mono1 = strmono(mono1); mono2 = strmono(mono2); ''' stmp1 = mono1; stmp2 = mono2; #乘号的位置 signIndex1 = stmp1.find('*'); signIndex2 = stmp2.find('*'); if (signIndex1 == -1): coef1 = stmp1; expr1 = ''; else: coef1 = stmp1[:signIndex1]; expr1 = stmp1[signIndex1+1:]; if (signIndex2 == -1): coef2 = stmp2; expr2 = ''; else: coef2 = stmp2[:signIndex2]; expr2 = stmp2[signIndex2+1:]; coef = coef1+'*'+coef2; if (signIndex1 == -1 or signIndex2 == -1): expr = expr1+expr2; else: expr = expr1+'*'+expr2; if (expr == ''): return '('+str(round(eval(coef), 6))+')'; return '('+str(round(eval(coef), 6))+')*'+expr; #计算两个单项式的商 def strdiv(s1, s2): #这个处理是保证每个单项式统一格式(coef)*expr stmp1 = strmono(s1); stmp2 = strmono(s2); #乘号的位置 signIndex1 = stmp1.find('*'); signIndex2 = stmp2.find('*'); if (signIndex1 == -1): coef1 = stmp1; expr1 = ''; else: coef1 = stmp1[:signIndex1]; expr1 = stmp1[signIndex1+1:]; if (signIndex2 == -1): coef2 = stmp2; expr2 = ''; else: coef2 = stmp2[:signIndex2]; expr2 = stmp2[signIndex2+1:]; coef = coef1+'/'+coef2; if (signIndex1 == -1 and signIndex2 != -1): expr = '('+expr2+')^[-1]'; elif (signIndex1 == -1 or signIndex2 == -1): expr = expr1+expr2; else: expr = expr1+'/'+expr2; if (expr == ''): return '('+str(round(eval(coef), 6))+')'; return '('+str(round(eval(coef), 6))+')*'+expr; #找一个字符串中所有待查找子串的位置,返回位置阵列 def findall(string, sub): size = len(string); index = []; cur = string.find(sub); index.append(cur) while (index[-1] != -1): cur = string.find(sub, index[-1]+1); index.append(cur); return index; #计算单项式的乘方, s^n def strpow(s, n): stmp = strmono(s); signIndex = stmp.find('*'); if (signIndex == -1): coef = stmp+'**'+str(n); expr = ''; return '('+str(round(eval(coef), 6))+')'; else: coef = stmp[:signIndex]+'**'+str(n); expr = '('+stmp[signIndex+1:]+')^['+str(n)+']'; return '('+str(round(eval(coef), 6))+')*'+expr; #计算代数式用,传入的两个阵列都具有['s1', 's2', ..., 'sn']这样的格式 def strdot(array1, array2): size1 = len(array1); size2 = len(array2); result = []; for i in range(size1): for j in range(size2): result.append(strmul(array1[i], array2[j])); return result; #把格式化后的单项式分解成[coef, expr]对组的形式 def explodemono(mono): stmp = mono; #乘号的位置 signIndex = stmp.find('*'); if (signIndex == -1): coef = stmp; expr = ''; else: coef = stmp[:signIndex]; expr = stmp[signIndex+1:]; return [coef, expr]; #合并同类项,传入的阵列具有['s1', 's2', ..., 'sn']这样的格式 def strcombine(array): size = len(array); explode = []; for i in range(size): #这里传入的阵列已经是规格化后的了,否则要加一层strmono处理。 explode.append(explodemono(monocombine(array[i]))); result = []; for i in range(size): size_1 = len(result); if size_1 <= 0: result.append(explode[i]); else: for j in range(size_1): if result[j][1] == explode[i][1]: result[j][0] = result[j][0] + '+' + explode[i][0]; break; if j >= size_1-1: result.append(explode[i]); result_1 = []; size_1 = len(result); for j in range(size_1): result[j][0] = str(round(eval(result[j][0]), 6)); if (result[j][0] == '0'): result_1.append('(0)'); else: tmps = result[j][1]; if (tmps == ''): result_1.append('('+result[j][0]+')'); else: result_1.append('('+result[j][0]+')*'+result[j][1]); return result_1; #指数为正整数的乘方 def strpow_n(array, n): #计算 result = []; if (n == 1): result = array; elif (n == 2): result = strdot(array, array); elif (n >= 3): tmp = strdot(array, array); n -= 2; while (n > 0): result = strdot(tmp, array); tmp = result; n -= 1; return result; #阵列取负 def minus(array): for i in range(len(array)): if array[i][1] == '-': #array[i][0]是'(, 这是规范 array[i] = array[i][0]+array[i][2:]; else: array[i] = array[i][0]+'-'+array[i][1:]; return array; ### # @usage 代数式运算 # @author mw # @date 2016年05月18日 星期三 07:37:01 # @param # @return # ### #两个多项式相加,合并同类项不在此进行 def stradd(array1, array2): #两个多项式相加,这里直接返回数组的相加 return array1+array2; #为了简便输入,不要求输入规范化代数式,(coef)*expr形式 #所以在此对多项式进行规范化 #至于单项式规范化,调用strmono函数即可 def strformat(array): for i in range(len(array)): array[i] = strmono(array[i]); return array; #把单项式完全格式化,使经过运算的没运算过的都具有统一的格式 def monoformat(mono): #规范化单项式,保证任意两个参数之间都添加一个'*'号 #这是为了和经过代数式乘法运算之后的格式统一 chars = len(mono); s = ''; for i in range(chars-1): if mono[i] == ']' and mono[i+1].isalpha(): s += mono[i]+'*'; elif mono[i].isalpha() and mono[i+1].isalpha(): s += mono[i]+'*'; #这里还有一个死角,就是下标或指数如果是用的代数式,并且是多项相乘 #可能会有一点问题,暂时不考虑了 else: s += mono[i]; s += mono[-1]; return s; #把单项式炸开,这里的单项式已经达到最大规范化,是(coef)*x_[1]^[2]*y_[2]^[2]这种结构形式了 #'*'号是要作为分隔符的,不可缺少 def explodemono_2(mono): part = mono.split('*'); #每个部分的[前部,指数部]的对组 map_ = []; for i in range(len(part)): expIndex = part[i].find('^'); if (expIndex != -1): map_.append([part[i][:expIndex], part[i][expIndex:]]); else: s = part[i]; #系数 if s[0] == '(': map_.append([part[i], '']); #代数式 else: map_.append([part[i], '^[1]']); map_ = sorted(map_, key = lambda a : a[0]); return map_; #单项式同类项合并 def monocombine(mono): map_ = explodemono_2(mono); size = len(map_); result = []; for i in range(size): size_1 = len(result); if (size_1 <= 0): result.append(map_[i]); else: for j in range(size_1): if result[j][0] == map_[i][0]: #双方的中括号位置 #由于规范化后的原因,这个括号是一定有的 p1 = result[j][1].find('['); p2 = result[j][1].find(']'); p3 = map_[i][1].find('['); p4 = map_[i][1].find(']'); s = result[j][1][p1+1:p2]+'+'+map_[i][1][p3+1:p4]; size_2 = len(s); for k in range(size_2): if s[k].isalpha(): break; #如果没有字符参数,可以计算出结果,就计算 if (k >= size_2-1): s = str(eval(s)); result[j][1] = '^['+s+']'; break; if (j >= size_1-1): result.append(map_[i]); size_1 = len(result); s = ''; for i in range(size_1): if (i > 0 and result[i][1] == '^[0]'): continue; s += result[i][0]+result[i][1]; if (i < size_1-1): s += '*'; return s; #排列公式 def arrangement(n, m): if n < m: return arrangement(m, n); else: factorial = 1; for i in range(n, n-m, -1): factorial*=i; return factorial; #组合公式 def combination(n, m): if (n < m): return combination(m, n); else: return arrangement(n, m)/arrangement(m,m); ''' if __name__ == '__main__': a = ['x^[2]', '1']; b = ['x', '-2']; a = strformat(a); b = strformat(b); #乘方7次 c = strpow_n(b, 7); #整理 d = strcombine(c); #多项式乘法一次 e = strdot(a, d); #整理 f = strcombine(e); print(f); >>> ['(1)*x^[9]', '(-14)*x^[8]', '(85)*x^[7]', '(-294)*x^[6]', '(644)*x^[5]', '(-952)*x^[4]', '(1008)*x^[3]', '(-800)*x^[2]', '(448)*x^[1]', '(-128)'] '''</span>
再给出一些用例和过程作为参考:
<span style="font-size:18px;">def tmp(): s = ['-3', '3', 'x', '-x', '2x', '-2x', '-2x^[2]', '3x_[2]^[3]', '-3x_[2]^[3]']; for i in range(len(s)): print(strmono(s[i])); >>> ['(1)*x^[2]*x^[2]', '(-1)*x^[2]*y', '(-1)*y*x^[2]', '(1)*y*y'] #两个多项式相加,合并同类项不在此进行 def stradd(array1, array2): #两个多项式相加,这里直接返回数组的相加 return array1+array2; #为了简便输入,不要求输入规范化代数式,(coef)*expr形式 #所以在此对多项式进行规范化 #至于单项式规范化,调用strmono函数即可 def strformat(array): for i in range(len(array)): array[i] = strmono(array[i]); return array; def tmp(): A = ['x^[2]', '-y']; B = strdot(A, A); print(B); >>> ['(1)*x^[2]*x^[2]', '(-1)*x^[2]*y', '(-1)*y*x^[2]', '(1)*y*y'] ['(1)*x^[2]', '(-1)*y'] ['((1)*)*x^[2]', '((-1)*)*y'] def tmp(): A = ['x^[2]', '-y']; B = strdot(A, A); print(B); C = strformat(A); print(C); #规范化只能进行一次,否则会解析出无法计算的表达式 D = strformat(C); print(D); >>> ['(-3)', '(3)', '(1)*x', '(-1)*x', '(2)*x', '(-2)*x', '(-2)*x^[2]', '(3)*x_[2]^[3]', '(-3)*x_[2]^[3]', '(-2)*x^[3]y^[3]', '(3)*x^[-1]y^[2]'] def tmp(): s = ['-3', '3', 'x', '-x', '2x', '-2x', '-2x^[2]', '3x_[2]^[3]', '-3x_[2]^[3]', '-2x^[3]y^[3]', '3x^[-1]y^[2]']; s1 = strformat(s); print(s1); >>> ['(-3)', '(3)', '(1)*x', '(-1)*x', '(2)*x', '(-2)*x', '(-2)*x^[2]', '(3)*x_[2]^[3]', '(-3)*x_[2]^[3]', '(-2)*x^[3]y^[3]', '(3)*x^[-1]y^[2]'] ['(-3)', '(3)', '(1)*x', '(-1)*x', '(2)*x', '(-2)*x', '(-2)*x^[2]', '(3)*x_[2]^[3]', '(-3)*x_[2]^[3]', '(-2)*x^[3]*y^[3]', '(3)*x^[-1]*y^[2]'] def tmp(): s = ['-3', '3', 'x', '-x', '2x', '-2x', '-2x^[2]', '3x_[2]^[3]', '-3x_[2]^[3]', '-2x^[3]y^[3]', '3x^[-1]y^[2]']; s1 = strformat(s); print(s1); for i in range(len(s1)): s1[i] = monoformat(s1[i]); print(s1); #把单项式完全格式化,使经过运算的没运算过的都具有统一的格式 def monoformat(mono): #规范化单项式,保证任意两个参数之间都添加一个'*'号 #这是为了和经过代数式乘法运算之后的格式统一 chars = len(mono); s = ''; for i in range(chars-1): if mono[i] == ']' and mono[i+1].isalpha(): s += mono[i]+'*'; elif mono[i].isalpha() and mono[i+1].isalpha(): s += mono[i]+'*'; #这里还有一个死角,就是下标或指数如果是用的代数式,并且是多项相乘 #可能会有一点问题,暂时不考虑了 else: s += mono[i]; s += mono[-1]; return s; >>> ['(-3)', '(3)', '(1)*x', '(-1)*x', '(2)*x', '(-2)*x', '(-2)*x^[2]', '(3)*x_[2]^[3]', '(-3)*x_[2]^[3]', '(-2)*x^[3]*y^[3]', '(3)*y^[2]*x^[-1]', '(5)*x*y*x'] [['(-3)', '']] [['(3)', '']] [['(1)', ''], ['x', '']] [['(-1)', ''], ['x', '']] [['(2)', ''], ['x', '']] [['(-2)', ''], ['x', '']] [['(-2)', ''], ['x', '^[2]']] [['(3)', ''], ['x_[2]', '^[3]']] [['(-3)', ''], ['x_[2]', '^[3]']] [['(-2)', ''], ['x', '^[3]'], ['y', '^[3]']] [['(3)', ''], ['x', '^[-1]'], ['y', '^[2]']] [['(5)', ''], ['x', ''], ['x', ''], ['y', '']] #把单项式炸开,这里的单项式已经达到最大规范化,是(coef)*x_[1]^[2]*y_[2]^[2]这种结构形式了 #'*'号是要作为分隔符的,不可缺少 def explodemono_2(mono): part = mono.split('*'); #每个部分的[前部,指数部]的对组 map_ = []; for i in range(len(part)): expIndex = part[i].find('^'); if (expIndex != -1): map_.append([part[i][:expIndex], part[i][expIndex:]]); else: map_.append([part[i], '']); map_ = sorted(map_, key = lambda a : a[0]); return map_; def tmp(): s = ['-3', '3', 'x', '-x', '2x', '-2x', '-2x^[2]', '3x_[2]^[3]', '-3x_[2]^[3]', '-2x^[3]y^[3]', '3y^[2]x^[-1]', '5xyx']; s1 = strformat(s); print(s1); for i in range(len(s1)): print(explodemono_2(s1[i])); >>> ['(-3)', '(3)', '(1)*x', '(-1)*x', '(2)*x', '(-2)*x', '(-2)*x^[2]', '(3)*x_[2]^[3]', '(-3)*x_[2]^[3]', '(-2)*x^[3]*y^[3]', '(3)*y^[2]*x^[-1]', '(5)*x*y*x'] [['(-3)', '']] [['(3)', '']] [['(1)', ''], ['x', '^[1]']] [['(-1)', ''], ['x', '^[1]']] [['(2)', ''], ['x', '^[1]']] [['(-2)', ''], ['x', '^[1]']] [['(-2)', ''], ['x', '^[2]']] [['(3)', ''], ['x_[2]', '^[3]']] [['(-3)', ''], ['x_[2]', '^[3]']] [['(-2)', ''], ['x', '^[3]'], ['y', '^[3]']] [['(3)', ''], ['x', '^[-1]'], ['y', '^[2]']] [['(5)', ''], ['x', '^[1]'], ['x', '^[1]'], ['y', '^[1]']] #把单项式炸开,这里的单项式已经达到最大规范化,是(coef)*x_[1]^[2]*y_[2]^[2]这种结构形式了 #'*'号是要作为分隔符的,不可缺少 def explodemono_2(mono): part = mono.split('*'); #每个部分的[前部,指数部]的对组 map_ = []; for i in range(len(part)): expIndex = part[i].find('^'); if (expIndex != -1): map_.append([part[i][:expIndex], part[i][expIndex:]]); else: s = part[i]; #系数 if s[0] == '(': map_.append([part[i], '']); #代数式 else: map_.append([part[i], '^[1]']); map_ = sorted(map_, key = lambda a : a[0]); return map_; def tmp(): s = ['-3', '3', 'x', '-x', '2x', '-2x', '-2x^[2]', '3x_[2]^[3]', '-3x_[2]^[3]', '-2x^[3]y^[3]', '3y^[2]x^[-1]', '5xyx']; s1 = strformat(s); print(s1); for i in range(len(s1)): print(explodemono_2(s1[i])); >>> ['(-3)', '(3)', '(1)*x', '(-1)*x', '(2)*x', '(-2)*x', '(-2)*x^[2]', '(3)*x_[2]^[3]', '(-3)*x_[2]^[3]', '(-2)*x^[3]*y^[3]', '(3)*y^[2]*x^[-1]', '(5)*x*y*x'] [['(-3)', '']] [['(3)', '']] [['(1)', ''], ['x', '^[1]']] [['(-1)', ''], ['x', '^[1]']] [['(2)', ''], ['x', '^[1]']] [['(-2)', ''], ['x', '^[1]']] [['(-2)', ''], ['x', '^[2]']] [['(3)', ''], ['x_[2]', '^[3]']] [['(-3)', ''], ['x_[2]', '^[3]']] [['(-2)', ''], ['x', '^[3]'], ['y', '^[3]']] [['(3)', ''], ['x', '^[-1]'], ['y', '^[2]']] [['(5)', ''], ['x', '^[1+1]'], ['y', '^[1]']] #单项式同类项合并 def monocombine(mono): map_ = explodemono_2(mono); size = len(map_); result = []; for i in range(size): size_1 = len(result); if (size_1 <= 0): result.append(map_[i]); else: for j in range(size_1): if result[j][0] == map_[i][0]: #双方的中括号位置 #由于规范化后的原因,这个括号是一定有的 p1 = result[j][1].find('['); p2 = result[j][1].find(']'); p3 = map_[i][1].find('['); p4 = map_[i][1].find(']'); s = result[j][1][p1+1:p2]+'+'+map_[i][1][p3+1:p4]; result[j][1] = '^['+s+']'; break; if (j >= size_1-1): result.append(map_[i]); return result; def tmp(): s = ['-3', '3', 'x', '-x', '2x', '-2x', '-2x^[2]', '3x_[2]^[3]', '-3x_[2]^[3]', '-2x^[3]y^[3]', '3y^[2]x^[-1]', '5xyx']; s1 = strformat(s); print(s1); for i in range(len(s1)): print(monocombine(s1[i])); >>> ['(-3)', '(3)', '(1)*x', '(-1)*x', '(2)*x', '(-2)*x', '(-2)*x^[2]', '(3)*x_[2]^[3]', '(-3)*x_[2]^[3]', '(-2)*x^[3]*y^[3]', '(3)*y^[2]*x^[-1]', '(5)*x*y*x^[2]*z*y*x*x_[1]'] (-3) (3) (1)*x^[1] (-1)*x^[1] (2)*x^[1] (-2)*x^[1] (-2)*x^[2] (3)*x_[2]^[3] (-3)*x_[2]^[3] (-2)*x^[3]*y^[3] (3)*x^[-1]*y^[2] (5)*x^[1+2+1]*x_[1]^[1]*y^[1+1]*z^[1] #单项式同类项合并 def monocombine(mono): map_ = explodemono_2(mono); size = len(map_); result = []; for i in range(size): size_1 = len(result); if (size_1 <= 0): result.append(map_[i]); else: for j in range(size_1): if result[j][0] == map_[i][0]: #双方的中括号位置 #由于规范化后的原因,这个括号是一定有的 p1 = result[j][1].find('['); p2 = result[j][1].find(']'); p3 = map_[i][1].find('['); p4 = map_[i][1].find(']'); s = result[j][1][p1+1:p2]+'+'+map_[i][1][p3+1:p4]; result[j][1] = '^['+s+']'; break; if (j >= size_1-1): result.append(map_[i]); size_1 = len(result); s = ''; for i in range(size_1): s += result[i][0]+result[i][1]; if (i < size_1-1): s += '*'; return s; def tmp(): s = ['-3', '3', 'x', '-x', '2x', '-2x', '-2x^[2]', '3x_[2]^[3]', '-3x_[2]^[3]', '-2x^[3]y^[3]', '3y^[2]x^[-1]', '5xyx^[2]zyxx_[1]']; s1 = strformat(s); print(s1); for i in range(len(s1)): print(monocombine(s1[i])); >>> ['(1)*x*x', '(1)*x*y', '(1)*x*z', '(1)*y*x', '(1)*y*y', '(1)*y*z', '(1)*z*x', '(1)*z*y', '(1)*z*z'] def tmp(): A = ['x', 'y', 'z']; B = ['x', 'y', 'z']; A = strformat(A); B = strformat(B); C = strdot(A, B); print(C); >>> ['(1)*x*x', '(1)*x*y', '(1)*x*z', '(1)*y*x', '(1)*y*y', '(1)*y*z', '(1)*z*x', '(1)*z*y', '(1)*z*z'] ['(1)*x^[1+1]', '(2)*x^[1]*y^[1]', '(2)*x^[1]*z^[1]', '(1)*y^[1+1]', '(2)*y^[1]*z^[1]', '(1)*z^[1+1]'] def tmp(): A = ['x', 'y', 'z']; B = ['x', 'y', 'z']; A = strformat(A); B = strformat(B); C = strdot(A, B); print(C); C = strcombine(C); print(C); ['(3)*x', '(3)*y', '(1)*y*x', '(1)*y*y', '(1)*z*x', '(1)*z*y'] ['(3)*x^[1]', '(3)*y^[1]', '(1)*x^[1]*y^[1]', '(1)*y^[1+1]', '(1)*x^[1]*z^[1]', '(1)*y^[1]*z^[1]'] def tmp(): A = ['3', 'y', 'z']; B = ['x', 'y']; A = strformat(A); B = strformat(B); C = strdot(A, B); print(C); C = strcombine(C); print(C); </span>
<span style="font-size:18px;">>>> import geo; >>> dir(geo); ['__builtins__', '__cached__', '__doc__', '__file__', '__initializing__', '__loader__', '__name__', '__package__', 'angleBetweenTwoLine', 'angleFromX', 'circle', 'crossPointOfTwoLine', 'distance2D', 'interceptOfLine', 'lcCrossPoint2D', 'lcDistance2D', 'lineDistance2D', 'math', 'parallelCheck', 'perpendicular', 'plDistance2D', 'pointFromCircle', 'pointInLine', 'slope', 'tangencyPoint'] >>> help(geo); Help on module geo: NAME geo FUNCTIONS angleBetweenTwoLine(Line_1, Line_2) #两直线夹角 Line_1:[Point_1, Point_2], Line_2:[Point_1, Point_2] angleFromX(Point_1, Point_2) #平面直线与X轴的夹角[x1, y1] -- [x2, y2] circle(Point_1, Point_2, Point_3) #圆 三点成圆 #以确定的三点表示圆的方程,得到圆心和半径 [x1, y1] -- [x2, y2] -- [x3, y3] crossPointOfTwoLine(Line_1, Line_2) #两直线交点 Line_1:[Point_1, Point_2], Line_2:[Point_1, Point_2] distance2D(Point_1, Point_2) #两点之间 #平面两点的距离[x1, y1] -- [x2, y2] interceptOfLine(Point_1, Point_2) #平面直线的截距[x1, y1] -- [x2, y2] lcCrossPoint2D(Line, Circle) #直经与圆的交点 lcDistance2D(Line, Circle) #直线到圆的距离 lineDistance2D(Line_1, Line_2) #两直线距离 Line_1:[Point_1, Point_2], Line_2:[Point_1, Point_2] parallelCheck(Line_1, Line_2) #两直线之间 #两直线是否平行 Line_1:[Point_1, Point_2], Line_2:[Point_1, Point_2] perpendicular(Line) #求直线的中垂线 plDistance2D(Point, Line) #点到直线的距离 pointFromCircle(Point, Circle) #判断点和圆的距离 Point:[x, y], Circle: [[x1, y1], [x2, y2], [x3, y3]] pointInLine(Point_1, Point_2, Point_3) #判定三点共线 slope(Point_1, Point_2) #平面直线的斜率[x1, y1] -- [x2, y2] tangencyPoint(Point, Circle) #过圆外部一点,得到与圆的切点的坐标 Point:[x, y], Circle: [[x1, y1], [x2, y2], [x3, y3]] </span>
这个是解三角形的工具:
<span style="font-size:18px;">### # @usage 解三角形 # @author mw # @date 2016年04月16日 星期六 07:50:31 # @param 三角形六元素 [边1, 边2, 边3, 角1, 角2, 角3],角为边所对的角,角度制 # @return 三角形的三个顶点坐标 # ### #解三角形, 传入array为[三边,三角]按顺序排列的六元素数组 #边和角是对边和对角的关系排列 #待求量用'?'表示, 如[3, 4, 5, '?', '?', '?']为求三个角 def solveTriangle(elementArray): elements = len(elementArray); if (elements != 6): return []; unknows_1 = unknows_2 = 0; for i in range(6): if (elementArray[i] == '?'): if (i < 3): unknows_1+=1; else: unknows_2+=1; if (unknows_1 >= 3 or unknows_1+unknows_2 > 3): return []; #已知三边 if (unknows_1 == 0): for i in range(3): if (elementArray[(i+1)%3]+elementArray[(i+2)%3] <=elementArray[i]): return []; return know3edges([elementArray[2], elementArray[0], elementArray[1]]); # if (unknows_1 == 1): #用余弦公式的情况 for i in range(3): if (elementArray[i] == '?' and (elementArray[(i+1)%3] != '?' and elementArray[(i+1)%3+3] == '?') and (elementArray[(i+2)%3] != '?' and elementArray[(i+2)%3+3] == '?')): b = elementArray[(i+1)%3]; c = elementArray[(i+2)%3]; A = elementArray[i+3]; a = math.sqrt(b*b+c*c-2*b*c*math.cos(A/180*math.pi)); elementArray[i] = a; break; if (elementArray[0] != '?' and elementArray[1] != '?' and elementArray[2] != '?'): return know3edges([elementArray[2], elementArray[0], elementArray[1]]); #至少两个角已知, 可以把三个角都求出来 if (unknows_2 == 1): for i in range(3): if (elementArray[i+3] == '?' and elementArray[(i+1)%3+3] != '?' and elementArray[(i+2)%3+3] != '?'): elementArray[i+3] = 180-(elementArray[(i+1)%3+3]+elementArray[(i+2)%3+3]); break; #能使用正弦公式的各种情况 #正弦公式a/sinA = b/sinB = c/sinC = sinValue sinValue = 0; for i in range(3): if (elementArray[i] != '?' and elementArray[i+3] != '?'): sinValue = elementArray[i]/math.sin(elementArray[i+3]/180*math.pi); break; #由已知两边一角或三角一边 => 两边两角或三边三角 for i in range(3): if (elementArray[i] == '?' and elementArray[i+3] != '?'): elementArray[i] = sinValue * math.sin(elementArray[i+3]/180*math.pi); if (elementArray[i] != '?' and elementArray[i+3] == '?'): elementArray[i+3] = math.asin(elementArray[i]/sinValue)/math.pi*180; if (elementArray[0] != '?' and elementArray[1] != '?' and elementArray[2] != '?'): return know3edges([elementArray[2], elementArray[0], elementArray[1]]); #如果还有角未求得 for i in range(3): if (elementArray[i+3] == '?'): elementArray[i+3] = 180-(elementArray[(i+1)%3+3]+elementArray[(i+2)%3+3]); break; #由角求边 for i in range(3): if (elementArray[i] == '?' and elementArray[i+3] != '?'): elementArray[i] = sinValue*math.sin(elementArray[i+3]/180*math.pi); #校验 for i in range(3): if (elementArray[i+3] <= 0): #角度为负或0, 说明给的条件不足以构成三角形 return []; return know3edges([elementArray[2], elementArray[0], elementArray[1]]); #已知三角形三条边求六元素 def know3edges(edges): if (len(edges) <= 0): return []; #角A A = math.acos((edges[1]*edges[1]+edges[2]*edges[2]-edges[0]*edges[0])/(2*edges[1]*edges[2])); #角B B = math.acos((edges[0]*edges[0]+edges[2]*edges[2]-edges[1]*edges[1])/(2*edges[0]*edges[2])); #角C C = math.acos((edges[0]*edges[0]+edges[1]*edges[1]-edges[2]*edges[2])/(2*edges[0]*edges[1])); A = A/math.pi*180; B = B/math.pi*180; C = C/math.pi*180; return [edges[1], edges[2], edges[0]]+[B, C, A];</span>
本节到此结束,欲知后事如何,请看下回分解。