并查集详解

本文转载自并查集详解(转)
并查集是我暑假从高手那里学到的一招,觉得真是太精妙的设计了,以前我无法解决的一类问题竟然可以用如此简单高效的方法搞定。来看一个实例,HDU1232畅通工程:首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的,最后要解决的是整幅图的连通性问题。比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块。像畅通工程这题,问还需要修几条路,实质就是求有几个连通分支。如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了;如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都是连起来的了;如果是3个连通分支,则只要再修两条路……以下面这组数据输入数据来说明:4 2 1 3 4 3第一行告诉你,一共有4个点,2条路。下面两行告诉你,1、3之间有条路,4、3之间有条路。那么整幅图就被分成了1-3-4和2两部分。只要再加一条路,把2和其他任意一个点连起来,畅通工程就实现了,那么这个这组数据的输出结果就是1。好了,现在编程实现这个功能吧,城镇有几百个,路有不知道多少条,而且可能有回路。 这可如何是好?我以前也不会呀,自从用了并查集之后,嗨,效果还真好!我们全家都用它!并查集由一个整数型的数组和两个函数构成。数组pre[]记录了每个点的前导点是什么,函数find是查找,join是合并。

int pre[1000];

//查找根节点
int find(int x)      
{ 
    int r=x;
    while(pre[r]!=r) r=pre[r];  
    int i=x,j;
   	//路径压缩 
    while(i!=r)                                        
    {
         j=pre[i]; 
         pre[i]=r; 
         i=j;
    }
    return r;
}
 
//连通x和y 
void join(int x,int y) 
{
    int fx=find(x),fy=find(y);
    if(fx!=fy) pre[fx]=fy;
}
为了解释并查集的原理,我将举一个更有爱的例子。 话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉朋友的朋友就是我的朋友,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:你是不是队长?你是不是队长?这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。

并查集详解_第1张图片
下面我们来看并查集的实现。 int pre[1000]这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。 find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先不论,后面再说)。

int find(int x)                                                                  
//查找我(x)的掌门
{
    int r=x;                                                                       
	//委托r去找掌门
	while(pre[r]!=r)  r=pre[r] ;                                                         
	//如果r的上级不是r自己,r就接着找他的上级直到找到掌门为止
	return r;    
	//掌门驾到~~~
}
再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画条线就行了。但我们现在是用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢? 还是举江湖的例子,假设现在武林中的形势如图所示。虚竹小和尚与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个阵营了。我不希望他们互相打架,就对他俩说,你们两位拉拉勾,做好朋友吧。他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说,大师,麻烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,门派内部的结构不要紧的。玄慈一听肯定火大了:我靠,凭什么是我变成她手下呀,怎么不反过来?我抗议!反正谁加入谁效果是一样的,我就随手指定了一个。这段函数的意思很明白了吧?
void join(int x,int y)                                                                   
//我想让虚竹和周芷若做朋友
{
	int fx=find(x),fy=find(y);                                                       
	//虚竹的老大是玄慈,芷若MM的老大是灭绝
    if(fx!=fy) pre[fx]=fy;                                                                   
    //玄慈和灭绝显然不是同一个人,方丈只好委委屈屈地当了师太的手下啦
}
再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么样,我也完全无法预计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。 设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:你是不是掌门? 上级说:我不是呀,我的上级是谁谁谁,你问问他看看。 一路问下去,原来两人的最终boss都是东厂曹公公。白面葫芦娃打电话给他的上级六组长,组长啊,我查过了,其实我们的掌门是曹公公。不如我们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻烦。白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。
并查集详解_第2张图片

HDU1232参考代码:

#include<iostream>  
using namespace std;  
int  pre[1050];  
bool t[1050];    
      
int find(int x)  
{  
    int r=x;  
    while(r!=pre[r]) r=pre[r];  
    int i=x,j;  
    while(pre[i]!=r)  
    {  
        j=pre[i];  
        pre[i]=r;  
        i=j;  
    }  
    return r;  
}  
  
void join(int x,int y)  
{  
    int fx=find(x),fy=find(y);  
    if(fx!=fy)  
    {  
        pre[fy]=fx;  
    }  
}   
  
int main()  
{  
    int N,M,a,b,i,j,ans;  
    while(scanf("%d%d",&N,&M)&&N)  
    {  
		for(i=1;i<=N;i++) pre[i]=i;    
        for(i=1;i<=M;i++)          
        {  
            scanf("%d%d",&a,&b);  
            join(a,b);  
        }  
        memset(t,0,sizeof(t));  
        for(i=1;i<=N;i++) t[find(i)]=1;  
        for(ans=0,i=1;i<=N;i++)  
        {
        	if(t[i]) ans++;  
        }
        printf("%d\n",ans-1);   
    }  
    return 0;  
}


你可能感兴趣的:(并查集详解)