后缀数组
首先计算出sa, rank, height数组,
易知,不妨设x, y(rank[x] < rank[y]),那么x与y的最长公共前缀的长度便为min{height[i]}, rank[x] < i <= rank[y]
利用这个这个性质,便可以对枚举做出很大优化:
假设当前位置为p,则可以从rank[p]开始分别向两边进行枚举,当枚举到 minHeight <当前k 便退出
虽然我也不懂为什么快,但最近做了好几道,发现这种方法就是快(若有人知道,希望在评论区告知^_^)
以下代码可以在1s内跑过
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; //后缀数组模板 /* 样例使用: 若原字符串为"abc" 则r = {1, 2, 3, 0}; n = 3; GetSa(r, sa, n+1, m); GetHeight(r, rank, height, n); 其中 r为字符串转化成的数组,末尾再添一个0 n为字符串的长度 sa[i]表示排名在i的后缀下标,i从1开始,满足Suffix(sa[i]) < Suffix(sa[i+1]) rank[i]表示Suffix(i)的排名,为sa的逆 height[i]表示sa[i]和sa[i-1]的最长公共前缀 */ struct SuffixArray { enum {MAXN = 100010}; int wa[MAXN], wb[MAXN], wsf[MAXN], wv[MAXN]; int Cmp(int *r, int a, int b, int k) { return r[a] == r[b] && r[a+k] == r[b+k]; } void GetSa(int *r, int *sa, int n, int m) { int i, j, p, *x = wa, *y = wb, *t; for (i = 0; i < m; i++) wsf[i] = 0; for (i = 0; i < n; i++) wsf[x[i]=r[i]]++; for (i = 1; i < m; i++) wsf[i] += wsf[i-1]; for (i = n - 1; i >= 0; i--) sa[--wsf[x[i]]] = i; p = j = 1; for (; p < n; j *= 2, m = p) { for (p = 0, i = n - j; i < n; i++) y[p++] = i; for (i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j; for (i = 0; i < n; i++) wv[i] = x[y[i]]; for (i = 0; i < m; i++) wsf[i] = 0; for (i = 0; i < n; i++) wsf[wv[i]]++; for (i = 1; i < m; i++) wsf[i] += wsf[i-1]; for (i = n - 1; i >= 0; i--) sa[--wsf[wv[i]]] = y[i]; swap(x, y); x[sa[0]] = 0; for (p = 1, i = 1; i < n; i++) x[sa[i]] = Cmp(y, sa[i-1], sa[i], j) ? p - 1 : p++; } } void GetHeight(int *r, int *sa, int *rank, int *height, int n) { int i, j, k = 0; for (i = 1; i <= n; i++) rank[sa[i]] = i; for (i = 0; i < n; i++) { if (k) k--; else k=0; j = sa[rank[i]-1]; while (r[i+k] == r[j+k]) k++; height[rank[i]] = k; } } }suffixArray; const int MAXN = 100010; const int STSIZE = 18; char s[MAXN]; int r[MAXN], sa[MAXN], rnk[MAXN], height[MAXN], pre[MAXN], nxt[MAXN]; int main() { int T; scanf("%d", &T); for (int kk = 1; kk <= T; kk++) { //input scanf("%s", s); //initialize int n = 0; for (int i = 0; s[i] != '\0'; i++) r[n++] = s[i] - 'a' + 1; r[n] = 0; //get sa & rank & height suffixArray.GetSa(r, sa, n + 1, 27); suffixArray.GetHeight(r, sa, rnk, height, n); //get pre & nxt for (int i = 1; i <= n; i++) { if (height[i] == 0) pre[i] = i; else pre[i] = pre[i-1]; } for (int i = n; i > 0; i--) { if (i == n || height[i+1] == 0) nxt[i] = i; else nxt[i] = nxt[i+1]; } //get answer printf("Case #%d:\n", kk); int i = 0; while (i < n) { int now = rnk[i]; int left = pre[now], right = nxt[now]; int t = i, k = 0; int minHeight = height[now]; for (int j = now - 1; j >= left; j--) { minHeight = min(minHeight, height[j+1]); if (minHeight < k) break; if (sa[j] < i) { if ((minHeight == k && sa[j] < t) || minHeight > k) { t = sa[j]; k = minHeight; } } } if (now + 1 <= right) minHeight = height[now+1]; for (int j = now + 1; j <= right; j++) { minHeight = min(minHeight, height[j]); if (minHeight < k) break; if (sa[j] < i) { if ((minHeight == k && sa[j] < t) || minHeight > k) t = sa[j]; k = minHeight; } } if (k == 0) printf("-1 %d\n", s[i]); else printf("%d %d\n", k, t); i += (k == 0 ? 1 : k); } } return 0; }