1 5 10 1 2 3 4 5 5 4 3 2 1
14
题意:
输入n和v,分别输入n个val[i]和n个cost[i],求容量为v的背包能换取多少价值。
思路:
裸的01背包,用dp[i][j]表示选第i个物体的时候价值为j的最大价值。不过写这题的过程中还是要思路清晰,状态转移方程容易写错。
如果我们的容量够拿下第i个物品:dp[i][j]=max(dp[i-1][j],dp[i-1][j-cost[i]]+val[i];
如果我们拿不下第i个物品了:dp[i][j]=dp[i-1][j];
#include <iostream> #include <stdio.h> #include <stdlib.h> #include<string.h> #include<algorithm> #include<math.h> #include<queue> #include<stack> using namespace std; typedef long long ll; int val[1010],cost[1010],dp[1010][1010]; int main() { int t; scanf("%d",&t); while(t--) { int n,v; scanf("%d%d",&n,&v); for(int i=1; i<=n; i++) scanf("%d",&val[i]); for(int i=1; i<=n; i++) scanf("%d",&cost[i]); memset(dp,0,sizeof(dp)); for(int i=1; i<=n; i++) for(int j=0; j<=v; j++) if(j-cost[i]>=0) dp[i][j]=max(dp[i-1][j],dp[i-1][j-cost[i]]+val[i]); else dp[i][j]=dp[i-1][j]; printf("%d\n",dp[n][v]); } return 0; }
然后用01背包的优化,开成一维数组:
#include <iostream> #include <stdio.h> #include <stdlib.h> #include<string.h> #include<algorithm> #include<math.h> #include<queue> #include<stack> using namespace std; typedef long long ll; int val[1010],cost[1010],dp[1010]; int main() { int t; scanf("%d",&t); while(t--) { int n,v; scanf("%d%d",&n,&v); for(int i=1; i<=n; i++) scanf("%d",&val[i]); for(int i=1; i<=n; i++) scanf("%d",&cost[i]); memset(dp,0,sizeof(dp)); for(int i=1; i<=n; i++) for(int j=v; j>=cost[i]; j--) dp[j]=max(dp[j],dp[j-cost[i]]+val[i]); printf("%d\n",dp[v]); } return 0; }