题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4312
题意:给定平面坐标上n(n<=100000)个点,然后在其中选一个,使得所有点到当前点的Chebyshev距离和最小。
分析:
切比雪夫距离:设a(x1,y1),b(x2,y2);DIS = max(|x1-x2|,|y1-y2|) = (|x1-x2+y1-y2|+|x1-x2-y1+y2|)/2;
我们将点aa的坐标看成(x1+y1,x1-y1),bb的坐标看成(x2+y2,x2-y2),从几何意义上讲相当于点在原
坐标系上逆时针旋转45度,并将坐标扩大√2倍。
然后求新的的最小的曼哈顿距离和的一半即可。
代码如下:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef long long LL; const int maxn = 1e5+10; struct point{ int x,y; LL sum; }p[maxn]; bool cmp1(point A,point B) { if(A.x<B.x) return true; if(A.x==B.x&&A.y<B.y) return true; return false; } bool cmp2(point A,point B) { if(A.y<B.y) return true; if(A.y==B.y&&A.y<B.y) return true; return false; } int main() { int t,n; scanf("%d",&t); while(t--){ scanf("%d",&n); LL sum=0; int x,y; for(int i=1;i<=n;i++){ scanf("%d%d",&x,&y); p[i].x=x-y; p[i].y=x+y; p[i].sum=0; } sort(p+1, p+1+n, cmp1); for (LL i = 1; i <= n; ++i) { p[i].sum += (i-1) * p[i].x - sum; sum += p[i].x; } sum = 0; for (LL i = n; i >= 1; --i) { p[i].sum += sum - (n-i) * p[i].x; sum += p[i].x; } sum = 0; sort(p+1, p+1+n, cmp2); for (LL i = 1; i <= n; ++i) { p[i].sum += (i-1) * p[i].y -sum; sum += p[i].y; } sum = 0; LL ans = 1LL<<62; for (LL i = n; i >= 1; --i) { p[i].sum += sum - (n-i) * p[i].y; ans = min(ans, p[i].sum); sum += p[i].y; } printf("%I64d\n",ans/2); } return 0; }