转载来源 http://blog.csdn.net/zhongkeli/article/details/6966805
康托展开
A B C | 0
A C B | 1
B A C | 2
B C A | 3
C A B | 4
C B A | 5
通过康托逆展开生成全排列
如果已知 s = ["A", "B", "C", "D"],X(s1) = 20,能否推出 s1 = ["D", "B", "A", "C"] 呢?
因为已知 X(s1) = a4*3! + a3*2! + a2*1! + a1*0! = 20,所以问题变成由 20 能否唯一地映射出一组 a4、a3、a2、a1?如果不考虑 ai 的取值范围,有
3*3! + 1*2! + 0*1! + 0*0! = 20
2*3! + 4*2! + 0*1! + 0*0! = 20
1*3! + 7*2! + 0*1! + 0*0! = 20
0*3! + 10*2! + 0*1! + 0*0! = 20
0*3! + 0*2! + 20*1! + 0*0! = 20
等等。但是满足 0 <= ai <= n-1 的只有第一组。可以使用辗转相除的方法得到 ai,如下图所示:
知道了a4、a3、a2、a1的值,就可以知道s1[0] 是子数组["A", "B", "C", "D"]中第3大的元素 "D",s1[1] 是子数组 ["A", "B", "C"] 中第1大的元素"B",s1[2] 是子数组 ["A", "C"] 中第0大的元素"A",s[3] 是子数组 ["C"] 中第0大的元素"C",所以s1 = ["D", "B", "A", "C"]。
这样我们就能写出一个函数 Permutation3(),它可以返回 s 的第 m 个排列。
附录 康托展开是怎么来的?
很显然,康托展开是本文的关键所在。你说康托他老人家当初是怎么想出来这种展开的方法的呢?我们还是以 s=["A", "B", "C"] 为例:
A B C | 0
A C B | 1
B A C | 2
B C A | 3
C A B | 4
C B A | 5
他的思路可能是这样的:首先,确定一个目标:将每个排列映射为一个自然数,这个自然数是顺序增长的(或者至少要有一定的规律)。要说映射成自然数,第一个想到的方法自然是把数组的下标当作一个n进制的数字,但是正如本文开篇所讨论的,这个数字并没有什么规律;第二个方法是计数,也就是令 X = 当前排列之前有多少个排列。例如 A B C 是第一个排列,它前面没有任何排列,所以 X(ABC) = 0;A C B 前面有一个排列,所以 X(ACB) = 1……那么如何才能知道 X(BCA) = 3 也就是 B C A 的前面有3个排列呢?这里的技巧仍然是分解——把问题分隔成相互独立的有限的小块。具体的方法是:先求出 B 第一次出现在最高位(也就是 B A C 这个排列)时前面有几个排列,再求出 B C A 是 B A C 后面第几个排列,把这个两个数相加就是想要的结果了。
先看第一个问题:B 第一次出现在最高位(也就是 B A C 这个排列)时前面有几个排列?由于已知 B A C 前面的排列一定是 A 开头的,所以只有 A 后面的两个元素可以变化,所以排列数是 P(2,2) = 2! 个。
第二个问题:B C A 是 B A C 后面第几个排列?因为都是 B 开头的,所以可以把开头的 B 忽略,问题变成 C A 是 A C 后面的第几个排列?同样,可以先考虑 C 第一次出现在最高位时前面有几个排列,因为 C A 前面的排列肯定是 A 开头的,所以只有 A 后面的一个元素可以变化,所以排列数是 P(1,1) = 1! 个。
所以 X(BCA) = 2! + 1! = 3
再例如想求 X(CBA),同样是先考虑 C 第一次出现在最高位时前面有多少个排列,因为比 C 小的元素有 A 和 B 两个,所以是 2*2! 个。再求出 B A 是 A B 后面的第 1! 个排列。就可以知道 X(CBA) = 2*2! + 1! = 5 了