- 贫血模式和工厂模式,实体类,工具类以及三层架构
weixin_34381666
数据库ui设计模式
最近在做一个项目,用到了这些技术,所以稍微整理了一下,希望能对和我一样菜鸟级的任务有所帮助三层架构微软公司推荐的.NET分层式结构一般分为三层架构,如图所示:表示层(WC)业务逻辑层(BLL)数据访问层(DAL)(1)数据访问层:有时候也称持久层,其功能主要是负责数据库的访问。简单地说就是实现对数据表的insert(增)、delete(删)、update(改)、select(查)的操作。(2)业务
- 边缘计算革命:重构软件架构的范式与未来
领码科技
技能篇产业篇AI应用边缘计算人工智能软件架构分布式系统云边协同实时性
摘要边缘计算通过将算力下沉至网络边缘,正在颠覆传统中心化软件架构的设计逻辑。本文系统分析了边缘计算对软件架构的范式革新,包括分布式分层架构、实时资源调度、安全防护体系等技术变革,并结合工业物联网、智慧医疗等场景案例,探讨了云边端协同、微服务改造、边缘AI融合等实践路径。文章提出“分层解耦-动态优化-智能自治”的架构设计框架,为开发者提供兼具理论性与操作性的指导。关键词:边缘计算、软件架构、分布式系
- 人工智能(11)——————计算机视觉
長安一片月
人工智能人工智能计算机视觉
目录声明正文1、简介2、步骤1)图像分类2)目标检测(目标定位)3)目标跟踪4)图像分割普通分割语义分割实例分割5)图像生成3、总结声明以下内容均来自B站吴恩达教授的视频以及西瓜书和众多前辈的学习成果总结,仅记录本人的大模型学习过程,如有侵权立马删除。言论仅代表自身理解,如有错误还请指正。正文1、简介我们先来看看百度百科里对计算机视觉的介绍:计算机视觉是一门研究如何使机器“看”的科学,更进一步的说
- 人工智能(10)——————自然语言处理
長安一片月
人工智能人工智能自然语言处理学习transformer
声明以下内容均来自B站吴恩达教授的视频以及西瓜书和众多前辈的学习成果总结,仅记录本人的大模型学习过程,如有侵权立马删除。言论仅代表自身理解,如有错误还请指正。正文简介其实在现在的人工智能领域,很多东西都是相互关联,相互促进的。比如机器学习可以引入到自然语言处理,计算机视觉等多个类别当中,而自然语言处理中特有的seq2seq方法也可以用于机器学习当中。但是根本上这些类别都存在自己独有之处。自然语言处
- Python 爬虫:一键解锁 3GPP 标准协议下载难题
youngerwang
Python5G移动通信python爬虫3gpp标准协议反爬技巧
文章目录【背景说明】零、缘起一、核心算法设计1.**分层遍历算法(BFS)**2.**下载控制算法**3.**路径生成算法**二、关键数据结构三、可靠性增强设计1.**网络容错机制**2.**数据完整性保障**3.**系统兼容性设计**四、反爬虫对抗策略1.**基础反反爬技术**2.**高级防护建议(暂未实现,后续补充)**五、性能优化权衡(暂未实现,后续补充)六、合规性考量七、总结八、Pytho
- 【深度学习新浪潮】图像修复(Image Inpainting)技术综述:定义、进展与应用展望
AndrewHZ
深度学习新浪潮图像处理算法计算机视觉深度学习人工智能图像修复LLM
本文为精简版,完整技术细节与参考文献可与作者讨论。1.图像修复的定义与核心目标图像修复(ImageInpainting)是一种通过算法手段填补图像中缺失区域或移除不需要对象的技术,其核心目标是利用图像上下文信息生成与周围像素一致且视觉自然的内容。该技术通过计算机视觉和深度学习模型,从损坏、遮挡或人为标记的区域中推断出合理的像素填充,最终实现图像的无痕修复。从数学视角看,图像修复可建模为一个逆向优化
- 谁在偷看你的数据?联邦学习与差分隐私的安全真相
AI筑梦师
人工智能下的网络安全安全人工智能网络安全
随着生成式AI逐步进入金融、医疗、教育、政务等高敏感行业,“隐私”问题被推上风口浪尖。很多企业将联邦学习(FederatedLearning)和差分隐私(DifferentialPrivacy)视为解决数据合规问题的金钥匙。但现实并不那么乐观。你真的知道联邦学习“去中心化”的模型参数,可能泄露出原始输入?你以为加了差分隐私就“万无一失”?攻击者却在模型梯度里重建了你的用户人脸。本期将系统解构联邦学
- OpenCV图像拼接(8)用于实现并查集(也称为不相交集合)数据结构类cv::detail::DisjointSets
村北头的码农
OpenCVopencv人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::DisjointSets类是OpenCV库中用于实现不相交集合(也称为并查集)数据结构的类。该数据结构常用于处理动态连接性问题,特别是在需要高效地合并集合和查找集合代表元素的场景中非常有用。它广泛应用于图像处理、计算机视觉任务中的图分割、连
- 都是收费的,halcon与visionpro有什么区别?
yuanpan
计算机视觉图像处理
Halcon和VisionPro(通常指CognexVisionPro)是工业视觉领域的两大主流软件平台,它们在应用场景、易用性、市场占有率等方面各有特点。以下从多个维度进行对比:1.应用层面Halcon适用领域:广泛应用于高精度、复杂视觉任务,如半导体检测、医疗影像、3D重建、深度学习等。灵活性:提供丰富的算法库(如形态学、Blob分析、深度学习等),适合定制化需求高的场景。多平台支持:支持Wi
- vue路由缓存问题
要天天开心啊
vue.js缓存前端
在Vue3中,路由缓存问题通常由以下原因及对应的解决方案引起:1.组件复用导致缓存原因:VueRouter默认会复用相同组件实例(例如动态路由/user/:id切换时,仅参数变化),导致组件不会销毁重建,生命周期钩子(如mounted)不触发。解决方案:监听路由变化:在组件内监听$route变化,主动更新数据。import{watch}from'vue';import{useRoute}from'
- 深度分离卷积模块:轻量化网络的革命性设计
点我头像干啥
Ai网络
引言:卷积神经网络的计算瓶颈在计算机视觉领域,卷积神经网络(CNN)已经成为了事实上的标准架构。从AlexNet到ResNet,再到EfficientNet,CNN架构不断演进,在图像分类、目标检测和语义分割等任务上取得了令人瞩目的成绩。然而,随着模型性能的提升,网络的计算复杂度和参数量也呈指数级增长,这给移动端和嵌入式设备的部署带来了巨大挑战。传统的标准卷积操作在提取特征时,同时考虑了空间相关性
- 视觉Transformer架构的前沿优化技术与高效部署
点我头像干啥
Ai深度学习神经网络计算机视觉
引言近年来,Transformer架构在自然语言处理(NLP)领域取得了巨大成功,逐渐成为深度学习的主流模型之一。随着研究的深入,Transformer架构也开始在计算机视觉领域崭露头角,尤其是在图像分类、目标检测和图像生成等任务中表现出色。然而,视觉Transformer(VisionTransformer,ViT)在计算效率和内存消耗方面面临巨大挑战,尤其是在处理高分辨率图像时。为了应对这些挑
- 数据集 VisDrone-Dataset 无人机检测跟踪数据集 >> DataBall
Xian-HHappy
DataBall数据集合(计算机视觉)-数据也可如此美好无人机
开源数据集VisDrone-Dataset无人机检测跟踪数据集-机器视觉目标跟踪人工智能深度学习无人机或通用无人驾驶飞行器(UAV)配备相机后,已被迅速部署到包括农业、航拍、快速递送和监视在内的广泛应用中。因此,自动理解从这些平台收集的视觉数据变得非常迫切,这使得计算机视觉与无人机的联系越来越紧密。我们很高兴地推出一个大规模的基准测试,为各种重要的计算机视觉任务提供精心注释的真实数据,名为VisD
- 基于轨迹的视频摘要:多样性损失详解
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍视频摘要技术是现代计算机视觉领域的一个重要研究方向,其主要目标是通过摘取视频中的关键帧或片段,生成一份能够代表原始视频内容的摘要。这样,用户就可以在短时间内了解视频的主要内容,极大地节省了时间。然而,这项技术面临着一个主要的挑战,即如何确保摘要的多样性,也就是说,如何在摘要中覆盖尽可能多的原始视频中的事件或主题。在这方面,基于轨迹的视频摘要算法提供了一种有效的解决方案。这种算法通过在特
- Active Directory (AD): 企业网络用户管理的重要性及 AD 迁移方法
(天津)鸿萌数据安全
活动目录迁移AD迁移windows活动目录迁移
WindowsActiveDirectory(AD)是Microsoft的专有目录服务。ActiveDirectory是一种分层结构,它将数据和信息作为对象存储在相应的网络上。WindowsActiveDirectory(AD)包含各种对象,例如用户、计算机、组、应用程序、打印机等设备等。打印机或计算机等对象被定义为资源。同时,用户或组被定义为安全主体。ActiveDirectory(AD)进一步
- 自动驾驶核心技术简介
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
自动驾驶核心技术简介关键词:感知系统、决策系统、控制系统、人工智能、计算机视觉、深度学习、V2X通信摘要:本文全面介绍了自动驾驶的核心技术,包括感知、决策和控制三大系统。文章深入探讨了各系统的关键组成部分、工作原理和最新技术进展。同时,本文还分析了自动驾驶技术在实际应用中面临的挑战,以及未来的发展趋势。通过详细的技术讲解、代码示例和实际案例,为读者提供了全面而深入的自动驾驶技术概览。1.背景介绍1
- 计算机视觉算法实战——手术导航:技术、应用与未来
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.手术导航中的计算机视觉:领域介绍计算机视觉在手术导航领域的应用代表了现代医学与人工智能技术的完美结合,正在彻底改变外科手术的方式。手术导航系统通过将医学影像、实时传感器数据和计算机视觉算法相结合,为外科医生提供了前所未有的精确性和可视化能力,使复杂的手术操作变得更加安全、可控。传统
- 计算机视觉算法实战——病变检测:从原理到应用
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能目标检测
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.计算机视觉在病变检测领域的概述计算机视觉在医疗影像分析中的应用已经成为人工智能最具前景的领域之一。病变检测作为其中的核心任务,旨在自动识别和定位医学图像中的异常区域,为医生提供辅助诊断工具。这一技术可以显著提高诊断效率,减少人为误差,并在早期疾病筛查中发挥关键作用。医学病变检测与常
- ElasticSearch7学习笔记之重建索引、预处理、数据建模与压力测试
coder_szc
ElasticSearchelasticsearch
文章目录重建索引使用场景UpdateByQuery1、插入数据2、改变Mapping3、变更生效4、查询测试Reindex1、新建索引2、重建索引3、查询测试IngestNode与数据预处理简介Pipeline与Processor_ingest/pipeline/_simulate管道api通过管道插入数据通过管道重建索引Painless脚本管道与painless脚本painless脚本更新数据保
- SSL/TLS证书体系中密码学协议的深度解析
网安秘谈
ssl密码学网络协议
一.协议架构与分层模型SSL/TLS协议采用分层设计架构,由记录协议层和握手协议层构成复合型安全通信框架:1.记录协议层(RecordProtocol):-实现传输数据的加密分帧(Framing)机制-支持对称加密算法(AES-GCM/ChaCha20-Poly1305)-提供HMAC完整性保护或AEAD认证加密-分片处理最大16KB数据块2.握手协议层(HandshakeProtocol):-复
- 《Python实战进阶》No34:卷积神经网络(CNN)图像分类实战
带娃的IT创业者
Python实战进阶pythoncnn分类
第34集:卷积神经网络(CNN)图像分类实战摘要卷积神经网络(CNN)是计算机视觉领域的核心技术,特别擅长处理图像分类任务。本集将深入讲解CNN的核心组件(卷积层、池化层、全连接层),并演示如何使用PyTorch构建一个完整的CNN模型,在CIFAR-10数据集上实现图像分类。我们还将探讨数据增强和正则化技术(如Dropout和BatchNorm)对模型性能的影响。核心概念和知识点1.CNN的核心
- MySQL的架构与SQL语句执行过程详解
玄学魔术师
数据库mysql架构sql
文章目录一、MySQL的结构详解1、Server层(1)连接器:(2)查询缓存:(3)分析器:(4)优化器:(5)执行器:2、存储引擎层二、SQL语句的执行过程一、MySQL的结构详解MySQL的架构可以分为Server层和存储引擎层。这种分层设计使得MySQL具有高度的灵活性和可扩展性;1、Server层Server层是MySQL的核心,负责处理所有与SQL语句相关的操作。(1)连接器:连接器是
- 【人工智能】图文详解深度学习中的卷积神经网络(CNN)
AI天才研究院
深度学习实战DeepSeekR1&大数据AI人工智能大模型深度学习人工智能cnn神经网络计算机视觉
【人工智能】图文详解深度学习中的卷积神经网络(CNN)概念和原理为什么要使用卷积神经网络?卷积神经网络简介卷积神经网络的数学公式池化操作:全连接层:激活函数卷积神经网络的C++实现示例代码应用场景自动驾驶影像物体识别医疗影像诊断附:计算机视觉中几种经典的网络结构概念和原理为什么要使用卷积神经网络?在讲述原理之前,我们先来解释为什么我们在图像及视频等等领域的机器学习中要使用CNN。我们都知道,使用多
- 多级缓存和数据一致性问题
keep0901
项目实践Redis并发缓存
一、什么是多级缓存?多级缓存是一种分层的数据缓存策略,通过在不同层级(如本地、分布式、数据库)存储数据副本,结合各层缓存的访问速度和容量特性,优化系统的性能和资源利用率。其核心思想是让数据尽可能靠近计算单元,减少对远端存储(如数据库)的直接访问,从而降低延迟、提升吞吐量。1.多级缓存的典型层级结构缓存层级描述示例特点L1本地缓存位于应用进程内存中,访问速度最快,容量最小。Caffeine、Guav
- 腾讯滑块验证码自动分析工具:原理与实现
ADRU
爬虫pythonpythongithub网络爬虫
腾讯滑块验证码自动分析工具:原理与实现项目简介滑块验证码是网站常用的安全验证方式,需要用户将滑块拖动到正确位置以验证身份。本项目开发了一个自动化工具,通过计算机视觉技术,能够分析腾讯滑块验证码并精确计算滑块需要移动的距离。该工具可用于自动化测试、安全研究和验证码优化等领域。技术栈:Python、OpenCV、PIL(Pillow)、Matplotlib、NumPy核心功能自动解析验证码CSS样式信
- Figure 02机器人有什么特别?
百态老人
人工智能笔记
Figure02是FigureAI公司最新发布的一款人形机器人,被誉为“地表最强”的AI硬件。该机器人在硬件和软件方面进行了从零开始的彻底重构,在人工智能、计算机视觉、电池、电子设备、传感器和执行单元等关键技术领域取得了重大突破。Figure02具备高度灵活的关节和肢体设计,其扭矩等级可达到150Nm,这使得它能够进行复杂的动作和操作。此外,该机器人还采用了外骨骼结构,由外皮承担负载和压力,使其在
- 【 新能源汽车热管理系统智能化数字孪生模型实现路径 】
新能源汽车--三电老K
新能源汽车热管理学习方法汽车嵌入式硬件
(面向汽车研发与测试测量行业的深度技术解析)一、数字孪生模型的核心架构与实现路径1.分层数字孪生架构设计数字孪生模型需实现“物理实体-虚拟模型-数据交互-决策优化”的闭环,其核心架构包括:感知层:通过高精度传感器(如NTC热敏电阻、红外传感器)实时采集电池、电机、电控系统的温度、流量、压力等参数,采样频率需达100Hz以上以满足动态响应需求。模型层:构建多物理场耦合模型,包括:热力学模型:基于能量
- 计算机视觉的多模态模型:开启感知智能的新篇章
点我头像干啥
Ai深度学习计算机视觉人工智能
引言:从单模态到多模态的演进在人工智能领域,计算机视觉长期以来主要关注单一视觉数据的处理与分析。然而,人类对世界的理解从来不是基于单一感官输入——我们同时通过视觉、听觉、触觉等多种感官来感知环境,大脑将这些信息融合形成对世界的综合认知。受此启发,计算机视觉领域近年来逐渐向多模态方向发展,通过整合视觉与其他模态(如文本、语音、深度信息等)的数据,构建更加接近人类认知能力的智能系统。多模态模型的核心思
- 智能算法治理与多领域技术创新
智能计算研究中心
其他
内容概要智能算法治理与多领域技术创新的交叉融合正重塑现代技术生态。当前技术发展呈现出两大核心脉络:一是以联邦学习、量子算法、可解释性模型为代表的基础算法体系迭代,二是跨领域场景(如金融风控、医疗影像、自动驾驶)中算法性能与治理能力的协同优化。围绕这一框架,需构建覆盖数据标注、特征工程、超参数调优的全流程治理机制,同时重点探讨生成对抗网络在推荐系统中的动态适配、注意力机制对计算机视觉任务的空间复杂度
- Java IO框架体系深度解析:从四基类到设计模式实践
D.eL
java设计模式开发语言
JavaIO框架体系深度解析:从四基类到设计模式实践一、IO流体系架构总览1.1四基类设计哲学JavaIO框架以InputStream、OutputStream、Reader、Writer四个抽象类为根基,构建了完整的流式IO体系。这种设计体现了以下核心原则:抽象分层:字节流与字符流的分离(前者处理原始数据,后者处理文本编码)职责分离:输入输出操作解耦(InputStream/Reader专注读取
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found