十八道海量数据处理面试题与相关知识详解

    


海量数据处理面试题与相关知识讲解



 

第一部分   十八道海量数据处理面试题


1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

方案1:可以估计每个文件的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

  1. 遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个小文件(记为)中。这样每个小文件的大约为300M。
  2. 遍历文件b,采取和a相同的方式将url分别存储到1000小文件中(记为)。这样处理后,所有可能相同的url都在对应的小文件()中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。
  3. 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

    方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter(关于Bloom filter本blog的后面部分有介绍),如果是,那么该url应该是共同的url(注意会有一定的错误率)。

 

读者反馈@crowgns:

  1. hash后要判断每个文件大小,如果hash分的不均衡有文件较大,还应继续hash分文件,换个hash算法第二次再分较大的文件,一直分到没有较大的文件为止。这样文件标号可以用A1-2表示(第一次hash编号为1,文件较大所以参加第二次hash,编号为2)
  2. 由于1存在,第一次hash如果有大文件,不能用直接set的方法。建议对每个文件都先用字符串自然顺序排序,然后具有相同hash编号的(如都是1-3,而不能a编号是1,b编号是1-1和1-2),可以直接从头到尾比较一遍。对于层级不一致的,如a1,b有1-1,1-2-1,1-2-2,层级浅的要和层级深的每个文件都比较一次,才能确认每个相同的uri。(说实话,这个第2点我没看太懂)

2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

方案1(这个方案不是很好):

  1. 顺序读取10个文件,按照hash(query)的结果将query写入到另外10个文件(记为)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。
  2. 找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为)。
  3. 这10个文件进行归并排序(内排序与外排序相结合)。

方案2:

    一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了

读者反馈@店小二:原文第二个例子中:“找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。”由于query会重复,作为key的话,应该使用hash_multimap 。hash_map 不允许key重复。@hywangw:店小二所述的肯定是错的,hash_map(query,query_count)是用来统计每个query的出现次数又不是存储他们的值出现一次把count+1 就行了 用multimap干什么?多谢hywangw)。

方案3:

    与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

 

3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

    方案:顺序读文件中,对于每个词x,取,然后按照该值存到5000个小文件(记为)中。这样每个文件大概是200k左右。如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie(关于trie树,请看本blog的后面部分或者我的另外一篇blog)树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。


4. 海量日志数据,提取出某日访问百度次数最多的那个IP。

    方案1:首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。


算法思想:分而治之+Hash

1.IP地址最多有2^32=40G(即使除以8(用bit表示每种情况)也有5G)种取值情况,所以不能完全加载到内存中处理; 
2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址; 
3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址;
4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的求最大值的算法得到总体上出现次数最多的IP;

5. 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。

    方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32*2bit=1GB内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。

 

我个人觉得方案1有问题,因为(1)除非你知道这2.5亿个数的范围,否则你是无法采用2-Bitmap映射的;(2)2^32*2bit应该是10GB而不是1GB,而10GB显然是一个承受不起的内存代价。

 

    方案2:也可采用上题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

 

6、腾讯面试题:给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?

    我的第一反应时快速排序+二分查找。以下是其它更好的方法:
    方案1:申请512M(40亿即4G,再除以8)的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。该方案即Bloom filter。

    这个方案有一定的误差。
    方案2:这个问题在《编程珠玑》里有很好的描述(该方案个人认为比较先进),大家可以参考下面的思路,探讨一下:
又因为2^32为40亿多,所以给定一个数可能在,也可能不在其中;
这里我们把40亿个数中的每一个用32位的二进制来表示
假设这40亿个数开始放在一个文件中。

    然后将这40亿个数分成两类:
      1.最高位为0
      2.最高位为1
    并将这两类分别写入到两个文件中,其中一个文件中数的个数<=20亿,而另一个>=20亿(这相当于折半了);
与要查找的数的最高位比较并接着进入相应的文件再查找

    再然后把这个文件为又分成两类:
      1.次最高位为0
      2.次最高位为1

    并将这两类分别写入到两个文件中,其中一个文件中数的个数<=10亿,而另一个>=10亿(这相当于折半了);
    与要查找的数的次最高位比较并接着进入相应的文件再查找。
    .......
    以此类推,就可以找到了,而且时间复杂度为O(logn),方案2完。


   附:这里,再简单介绍下,位图方法:
    使用位图法判断整形数组是否存在重复 
    判断集合中存在重复是常见编程任务之一,当集合中数据量比较大时我们通常希望少进行几次扫描,这时双重循环法就不可取了。

    位图法比较适合于这种情况,它的做法是按照集合中最大元素max创建一个长度为max+1的新数组,然后再次扫描原数组,遇到几就给新数组的第几位置上1,如遇到5就给新数组的第六个元素置1,这样下次再遇到5想置位时发现新数组的第六个元素已经是1了,这说明这次的数据肯定和以前的数据存在着重复。这种给新数组初始化时置零其后置一的做法类似于位图的处理方法故称位图法。它的运算次数最坏的情况为2N。如果已知数组的最大值即能事先给新数组定长的话效率还能提高一倍。


7. 海量数据分布在100台电脑中,想个办法高效统计出这批数据最大的TOP10。

方案1:

  1. 在每台电脑上求出TOP10,可以采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。
  2. 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。

读者反馈@QinLeopard

第7题的方法中,是不是不能保证每个电脑上的前十条,肯定包含最后频率最高的前十条呢?
比如说第一个文件中:A(4), B(5), C(6), D(3)
第二个文件中:A(4),B(5),C(3),D(6)
第三个文件中: A(6), B(5), C(4), D(3)
如果要选Top(1), 选出来的结果是A,但结果应该是B。

    @July:我想,这位读者可能没有明确题意。本题目中的TOP10是指最大的10个数,而不是指出现频率最多的10个数。但如果说,现在有另外一题,要你求频率最多的 10个,相当于求访问次数最多的10个IP地址那道题,即是本文中上面的第4题。特此说明。

 

况且,在找频率最大的TopK时,需要将每个记录放到一个文件中,即全部的A放到一个文件,全部的B放到一个问价,C和D类似。看下面的题:


8. 怎么在海量数据中找出重复次数最多的一个?

    方案:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求。

 

9. 上千万或上亿数据(有重复),统计其中出现次数最多的前N个数据。

    方案:上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后就是取出前N个出现次数最多的数据了,可以用第7题提到的堆机制完成。


10. 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现?

    方案:这题用trie树比较合适,hash_map也应该能行。


11. 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

    方案:这题是考虑时间效率。用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大的那一个。


12. 一个文本文件,找出前10个经常出现的词,但这次文件比较长,说是上亿行或十亿行,总之无法一次读入内存,问最优解。

    方案:首先根据词用hash并求模,将文件分解为多个小文件,对于单个文件利用上题的方法求出每个文件中10个最常出现的词。然后再进行归并处理,找出最终的10个最常出现的词。


13. 100w个数中找出最大的100个数。

  •     方案1:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,直到扫描了所有的元素。复杂度为O(100w*100)。这个方案底层的数据结构还可以用堆来实现,即最小堆。此时的时间复杂度为O(100w*log100),即方案3.
  •     方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,直到比轴大的一部分刚好比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。 (这个很重要),此时得出的前100大元素还是有序的。
  •     方案3:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。

14. 寻找热门查询:

搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复次数比较高,虽然总数是1千万,但是如果去除重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。

(1) 请描述你解决这个问题的思路;

(2) 请给出主要的处理流程,算法,以及算法的复杂度。

 

第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计

第二步、借助堆这个数据结构,找出Top K,时间复杂度为N'*logK。
   即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比,替换。所以,我们最终的时间复杂度是:O(N) + N'*O(logK),(N为1000万,N’为300万)。

或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

 

备注:按照解法可知,这些记录是可以全部转入内存的。

 

15. 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数中的中位数(按照从小到大排序后中间位置的那个数)?

    方案1:先大体估计一下这些数的范围,比如这里假设这些数都是32位无符号整数(共有2^32个)。我们把0到2^32-1的整数划分为N个范围段,每个段包含(2^32)/N个整数。比如,第一个段为0到2^32/N-1,第二段为(2^32)/N到(2^32)/N-1,…,第N个段为(2^32)(N-1)/N到2^32-1。然后,扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。下面我们依次统计每个机器上数的个数,依次累加,直到找到第k个机器,在该机器上累加的数大于或等于(N^2)/2,而在第k-1个机器上的累加数小于(N^2)/2,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第(N^2)/2-x位。然后我们对第k个机器的数排序,并找出第(N^2)/2-x个数,即为所求的中位数。复杂度是O(N^2)的。(这个方案比较好)

    方案2:先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第(N^2)/2个便是所求。复杂度是O(N^2*lgN^2)的。

   方案3:(这个是我加的)将N^2个数依次排开,然后用快速排序的第一趟,找到一个轴,用轴将数组分成两段,在多的那一部分继续上述过程(记少的那部分数的个数为x),此时要找的数在(N^2)/2-x处。然后,再重复上述步骤,直到找到为止。


16. 最大间隙问题

给定n个实数,求这n个实数在实轴上向量2个数之间的最大差值,要求线性的时间算法。

方案1:最先想到的方法就是先对这n个数据进行排序,然后一遍扫描即可确定相邻的最大间隙。但该方法不能满足线性时间的要求。故采取如下方法:

  1. 找到n个数据中最大和最小数据max和min。
  2. 用n-2个点等分区间[min, max],即将[min, max]等分为n-1个区间(前闭后开区间),将这些区间看作桶,编号为,且桶i 的上界和桶i+1的下届相同,即每个桶的大小相同。每个桶的大小为:。实际上,这些桶的边界构成了一个等差数列(首项为min,公差为),且认为将min放入第一个桶,将max放入第n-1个桶
  3. 将n个数放入n-1个桶中:将每个元素x[i] 分配到某个桶(编号为index),其中,并求出分到每个桶的最大最小数据。
  4. 最大间隙:除最大最小数据max和min以外的n-2个数据放入n-1个桶中,由抽屉原理可知至少有一个桶是空的又因为每个桶的大小相同,所以最大间隙不会在同一桶中出现,一定是某个桶的上界和某个桶的下界之间隙,且该两筒之间的桶一定是空桶。也就是说,最大间隙在桶i的上界和桶j的下界之间产生j>=i+1。一遍扫描即可完成。

 

17. 将多个集合合并成没有交集的集合

    给定一个字符串的集合,格式如:。要求将其中交集不为空的集合合并,要求合并完成的集合之间无交集,例如上例应输出

(1) 请描述你解决这个问题的思路;

(2) 给出主要的处理流程,算法,以及算法的复杂度;

(3) 请描述可能的改进。

    方案:采用并查集(请查看我的另外一篇关于并查集的blog)。首先所有的字符串都在单独的并查集中。然后依次扫描每个集合,顺序将两个相邻元素合并。例如,对于,首先查看aaa和bbb是否在同一个并查集中,如果不在,那么把它们所在的并查集合并,然后再看bbb和ccc是否在同一个并查集中,如果不在,那么也把它们所在的并查集合并。接下来再扫描其他的集合,当所有的集合都扫描完了,并查集代表的集合便是所求。复杂度应该是O(NlgN)的。改进的话,首先可以记录每个节点的根结点,改进查询。合并的时候,可以把大的和小的进行合,这样也减少复杂度。

 

18. 最大子序列与最大子矩阵问题

数组的最大子序列问题:给定一个数组,其中元素有正,也有负,找出其中一个连续子序列,使和最大。

    方案1:这个问题可以动态规划的思想解决。设b[i]表示以第i个元素a[i]结尾的最大子序列,那么显然。基于这一点可以很快用代码实现。(这个思想在编程之美上面也有)

最大子矩阵问题:给定一个矩阵(二维数组),其中数据有大有小,请找一个子矩阵,使得子矩阵的和最大,并输出这个和。

    方案2:可以采用与最大子序列类似的思想来解决。如果我们确定了选择第i列和第j列之间的元素(降维),那么在这个范围内,其实就是一个最大子序列问题。如何确定第i列和第j列可以词用暴搜的方法进行。

 


第二部分   海量数据处理之Bti-map详解


什么是Bit-map

    所谓的Bit-map就是用一个bit位来标记某个元素对应的Value,而Key即是该元素。由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省。

    使用Bitmap排序

    如果说了这么多还没明白什么是Bit-map,那么我们来看一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复)。那么我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0(如下图:)

    然后遍历这5个元素,首先第一个元素是4,那么就把4对应的位置为1(可以这样操作 p+(i/8)|(0x01<<(i%8)) 当然了这里的操作涉及到Big-ending和Little-ending的情况,这里默认为Big-ending),因为是从零开始的,所以要把第五位置为1(如下图):

      

然后再处理第二个元素7,将第八位置为1,,接着再处理第三个元素,一直到最后处理完所有的元素,将相应的位置为1,这时候的内存的Bit位的状态如下:

然后我们现在遍历一遍Bit区域,将该位是1的位的编号输出(2,3,4,5,7),这样就达到了排序的目的。

 

可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下

问题实例

1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

    8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。 (可以理解为从0-99 999 999的数字,每个数字对应一个Bit位,所以只需要99M个Bit==1.2MBytes,这样,就用了小小的1.2M左右的内存表示了所有的8位数的电话)

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

    将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上,在遍历这些数的时候,如果对应位置的值是0,则将其置为1;如果是1,将其置为2;如果是2,则保持不变。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理(最后一句没看懂)。


 

第三部分   十个海量数据处理方法大总结


    对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎讨论。

一、Bloom filter

  适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集

  基本原理及要点:
  对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了

  还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

  举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

  注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

扩展:
  Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

  问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

  根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些url ip是一一对应的,就可以转换成ip,则大大简单了。

备注: 扩展:bloom filter可以看做是对bit-map的扩展。


二、Hashing

  适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存

  基本原理及要点:
  hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
  碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。

      扩展:
  d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。

  问题实例:
  1).海量日志数据,提取出某日访问百度次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存(真心表示这个有问题,见上面的例子),然后进行统计。


三、堆

  适用范围:海量数据前n大,并且n比较小,堆可以放入内存

  基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

  扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数(我表示真心没看懂)。

问题实例:
   100w个数中找最大的前100个数。
  用一个100个元素大小的最小堆即可。

 

四、双层桶划分----其实本质上就是【分而治之】的思想,重在“分”的技巧上!

  适用范围:第k大,中位数,不重复或重复的数字
  基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。

  扩展:
  问题实例:
  1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
  有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域再利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

  2).5亿个int找它们的中位数。
  这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

  实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。


五、数据库索引

  适用范围:大数据量的增删改查

  基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。


、倒排索引(Inverted index)

  适用范围:搜索引擎,关键字查询

  基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。

 以英文为例,下面是要被索引的文本:
    T0 = "it is what it is"
    T1 = "what is it"
    T2 = "it is a banana"

我们就能得到下面的反向文件索引:

    "a":      {2}
    "banana": {2}
    "is":     {0, 1, 2}
    "it":     {0, 1, 2}
    "what":   {0, 1}

 检索的条件"what","is"和"it"将对应集合的交集。

  正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。

  扩展:
  问题实例:文档检索系统,查询哪些文件包含了某单词,比如常见的学术论文的关键字搜索。


七、外排序

  适用范围:大数据的排序,去重

  基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树

  扩展:

  问题实例:
  1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。

  这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。


八、trie树

  适用范围:数据量大,重复多,但是数据种类小可以放入内存

  基本原理及要点:实现方式,节点孩子的表示方式

  扩展:压缩实现。

  问题实例:
  1).有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序。
  2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?
  3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。


九、分布式处理 mapreduce

  适用范围:数据量大,但是数据种类小可以放入内存

  基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

  扩展:
  问题实例:
  1).The canonical example application of MapReduce is a process to count the appearances of
each different word in a set of documents:
  2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。
  3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?


经典问题分析
  上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。

  可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序

  所谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可以为数据建立字典,比如通过 map,hashmap,trie,然后直接进行统计即可。当然在更新每条数据的出现次数的时候,我们可以利用一个堆来维护出现次数最多的前N个数据,当然这样导致维护次数增加,不如完全统计后在求前N大效率高。

  如果数据无法放入内存。一方面我们可以考虑上面的字典方法能否被改进以适应这种情形,可以做的改变就是将字典存放到硬盘上,而不是内存,这可以参考数据库的存储方法。

  当然还有更好的方法,就是可以采用分布式计算,基本上就是map-reduce过程,首先可以根据数据值或者把数据hash(md5)后的值,将数据按照范围划分到不同的机子,最好可以让数据划分后可以一次读入内存,这样不同的机子负责处理各种的数值范围,实际上就是map。得到结果后,各个机子只需拿出各自的出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是reduce过程。

  实际上可能想直接将数据均分到不同的机子上进行处理,这样是无法得到正确的解的。因为一个数据可能被均分到不同的机子上,而另一个则可能完全聚集到一个机子上,同时还可能存在具有相同数目的数据。比如我们要找出现次数最多的前100个,我们将1000万的数据分布到10台机器上,找到每台出现次数最多的前 100个,归并之后这样不能保证找到真正的第100个,因为比如出现次数最多的第100个可能有1万个,但是它被分到了10台机子,这样在每台上只有1千个,假设这些机子排名在1000个之前的那些都是单独分布在一台机子上的,比如有1001个,这样本来具有1万个的这个就会被淘汰,即使我们让每台机子选出出现次数最多的1000个再归并,仍然会出错,因为可能存在大量个数为1001个的发生聚集。因此不能将数据随便均分到不同机子上,而是要根据hash 后的值将它们映射到不同的机子上处理,让不同的机器处理一个数值范围。

   而外排序的方法会消耗大量的IO,效率不会很高。而上面的分布式方法,也可以用于单机版本,也就是将总的数据根据值的范围,划分成多个不同的子文件,然后逐个处理。处理完毕之后再对这些单词的及其出现频率进行一个归并。实际上就可以利用一个外排序的归并过程。

   另外还可以考虑近似计算,也就是我们可以通过结合自然语言属性,只将那些真正实际中出现最多的那些词作为一个字典,使得这个规模可以放入内存。

你可能感兴趣的:(海量数据)