前段时间在搞贪心算法,为了举例,故拿TSP来开刀,写了段求解算法代码以便有需之人,注意代码考虑可读性从最容易理解角度写,没有优化,有需要可以自行优化!
一、TSP问题
TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。
TSP问题是一个组合优化问题。该问题可以被证明具有NPC计算复杂性。TSP问题可以分为两类,一类是对称TSP问题(Symmetric TSP),另一类是非对称问题(Asymmetric TSP)。所有的TSP问题都可以用一个图(Graph)来描述:
V={c1, c2, …, ci, …, cn},i = 1,2, …, n,是所有城市的集合.ci表示第i个城市,n为城市的数目;
E={(r, s): r,s∈ V}是所有城市之间连接的集合;
C = {crs: r,s∈ V}是所有城市之间连接的成本度量(一般为城市之间的距离);
如果crs = csr, 那么该TSP问题为对称的,否则为非对称的。
一个TSP问题可以表达为:
求解遍历图G = (V, E, C),所有的节点一次并且回到起始节点,使得连接这些节点的路径成本最低。
二、贪心算法
贪心算法,又名贪婪算法(学校里老教授都喜欢叫贪婪算法),是一种常用的求解最优化问题的简单、迅速的算法。贪心算法总是做出在当前看来最好的选择,它所做的每一个在当前状态下某种意义上是最好的选择即贪心选择,并希望通过每次所作的贪心选择导致最终得到问题最优解。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
1、贪心算法的基本思路
1)建立数学模型来描述问题;
2)把求解的问题分成若干个子问题
3)对每一个子问题求解,得到子问题的局部最优解
4)把子问题的局部最优解合成原问题的一个解
2、贪心算法的实现框架
贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择,而贪心策略适用的前提是:局部最优策略能导致产生全局最优解。
从问题的某一初始解出发;
while (能朝给定总目标前进一步)
{
利用可行的决策,求出可行解的一个解元素;
}
由所有解元素组合成问题的一个可行解;
3、贪心算法存在的问题
1)不能保证求得的最后解是最佳的;
2)不能用来求最大最小解问题;
3)只能在某些特定条件约束的情况下使用,例如贪心策略必须具备无后效性等。
4、典型的贪心算法使用领域
马踏棋盘、背包、装箱等
三、贪心算法求解TSP问题
贪心策略:在当前节点下遍历所有能到达的下一节点,选择距离最近的节点作为下一节点。基本思路是,从一节点出发遍历所有能到达的下一节点,选择距离最近的节点作为下一节点,然后把当前节点标记已走过,下一节点作为当前节点,重复贪心策略,以此类推直至所有节点都标记为已走节点结束。我们使用TSP问题依然来自于tsplib上的att48,这是一个对称TSP问题,城市规模为48,其最优值为10628.其距离计算方法下图所示:
好,下面是具体代码:
求解结果截图:
四、总结
单从求解结果来看,我个人其实还是能接受这个解,但仔细想想,实际上这个求解结果有太多运气成分在里面,贪心算法毕竟是贪心算法,只能缓一时,而不是长久之计,问题的模型、参数对贪心算法求解结果具有决定性作用,这在某种程度上是不能接受的,于是聪明的人类就发明了各种智能算法(也叫启发式算法),但在我看来所谓的智能算法本质上就是贪心算法和随机化算法结合,例如传统遗传算法用的选择策略就是典型的贪心选择,正是这些贪心算法和随机算法的结合,我们才看到今天各种各样的智能算法。