Java语言中有一个“先行发生”(happen—before)的规则,它是Java内存模型中定义的两项操作之间的偏序关系,如果操作A先行发生于操作B,其意思就是说,在发生操作B之前,操作A产生的影响都能被操作B观察到,“影响”包括修改了内存中共享变量的值、发送了消息、调用了方法等,它与时间上的先后发生基本没有太大关系。这个原则特别重要,它是判断数据是否存在竞争、线程是否安全的主要依据。
举例来说,假设存在如下三个线程,分别执行对应的操作:
---------------------------------------------------------------------------
线程A中执行如下操作:i=1
线程B中执行如下操作:j=i
线程C中执行如下操作:i=2
---------------------------------------------------------------------------
假设线程A中的操作”i=1“ happen—before线程B中的操作“j=i”,那么就可以保证在线程B的操作执行后,变量j的值一定为1,即线程B观察到了线程A中操作“i=1”所产生的影响;现在,我们依然保持线程A和线程B之间的happen—before关系,同时线程C出现在了线程A和线程B的操作之间,但是C与B并没有happen—before关系,那么j的值就不确定了,线程C对变量i的影响可能会被线程B观察到,也可能不会,这时线程B就存在读取到不是最新数据的风险,不具备线程安全性。
下面是Java内存模型中的八条可保证happen—before的规则,它们无需任何同步器协助就已经存在,可以在编码中直接使用。如果两个操作之间的关系不在此列,并且无法从下列规则推导出来的话,它们就没有顺序性保障,虚拟机可以对它们进行随机地重排序。
1、程序次序规则:在一个单独的线程中,按照程序代码的执行流顺序,(时间上)先执行的操作happen—before(时间上)后执行的操作。
2、管理锁定规则:一个unlock操作happen—before后面(时间上的先后顺序,下同)对同一个锁的lock操作。
3、volatile变量规则:对一个volatile变量的写操作happen—before后面对该变量的读操作。
4、线程启动规则:Thread对象的start()方法happen—before此线程的每一个动作。
5、线程终止规则:线程的所有操作都happen—before对此线程的终止检测,可以通过Thread.join()方法结束、Thread.isAlive()的返回值等手段检测到线程已经终止执行。
6、线程中断规则:对线程interrupt()方法的调用happen—before发生于被中断线程的代码检测到中断时事件的发生。
7、对象终结规则:一个对象的初始化完成(构造函数执行结束)happen—before它的finalize()方法的开始。
8、传递性:如果操作A happen—before操作B,操作B happen—before操作C,那么可以得出A happen—before操作C。
1、首先来看操作A在时间上先与操作B发生,是否意味着操作A happen—before操作B?
一个常用来分析的例子如下:
private int value = 0; public int get(){ return value; } public void set(int value){ this.value = value; } }
对照以上八条happen—before规则,发现没有一条规则适合于这里的value变量,从而我们可以判定线程A中的setValue(3)操作与线程B中的getValue()操作不存在happen—before关系。因此,尽管线程A的setValue(3)在操作时间上先于操作B的getvalue(),但无法保证线程B的getValue()操作一定观察到了线程A的setValue(3)操作所产生的结果,也即是getValue()的返回值不一定为3(有可能是之前setValue所设置的值)。这里的操作不是线程安全的。
因此,”一个操作时间上先发生于另一个操作“并不代表”一个操作happen—before另一个操作“。
解决方法:可以将setValue(int)方法和getValue()方法均定义为synchronized方法,也可以把value定义为volatile变量(value的修改并不依赖value的原值,符合volatile的使用场景),分别对应happen—before规则的第2和第3条。注意,只将setValue(int)方法和getvalue()方法中的一个定义为synchronized方法是不行的,必须对同一个变量的所有读写同步,才能保证不读取到陈旧的数据,仅仅同步读或写是不够的 。
2、其次来看,操作A happen—before操作B,是否意味着操作A在时间上先与操作B发生?
看有如下代码:
x = 1; y = 2;
因此,”一个操作happen—before另一个操作“并不代表”一个操作时间上先发生于另一个操作“。
最后,一个操作和另一个操作必定存在某个顺序,要么一个操作或者是先于或者是后于另一个操作,或者与两个操作同时发生。同时发生是完全可能存在的,特别是在多CPU的情况下。而两个操作之间却可能没有happen-before关系,也就是说有可能发生这样的情况,操作A不happen-before操作B,操作B也不happen-before操作A,用数学上的术语happen-before关系是个偏序关系。两个存在happen-before关系的操作不可能同时发生,一个操作A happen-before操作B,它们必定在时间上是完全错开的,这实际上也是同步的语义之一(独占访问)。
public class LazySingleton { private int someField; private static LazySingleton instance; private LazySingleton() { this.someField = new Random().nextInt(200)+1; // (1) } public static LazySingleton getInstance() { if (instance == null) { // (2) synchronized(LazySingleton.class) { // (3) if (instance == null) { // (4) instance = new LazySingleton(); // (5) } } } return instance; // (6) } public int getSomeField() { return this.someField; // (7) } }
public class Singleton { private Singleton() {} // Lazy initialization holder class idiom for static fields private static class InstanceHolder { private static final Singleton instance = new Singleton(); } public static Singleton getSingleton() { return InstanceHolder.instance; } }
这样我们便可以得到,线程Ⅰ的语句(5) -> 语线程Ⅱ的句(2),根据单线程规则,线程Ⅰ的语句(1) -> 线程Ⅰ的语句(5)和语线程Ⅱ的句(2) -> 语线程Ⅱ的句(7),再根据传递规则就有线程Ⅰ的语句(1) -> 语线程Ⅱ的句(7),这表示线程Ⅱ能够观察到线程Ⅰ在语句(1)时对someFiled的写入值,程序能够得到正确的行为。
注:
1、volatile屏蔽指令重排序的语义在JDK1.5中才被完全修复,此前的JDK中及时将变量声明为volatile,也仍然不能完全避免重排序所导致的问题(主要是volatile变量前后的代码仍然存在重排序问题),这点也是在JDK1.5之前的Java中无法安全使用DCL来实现单例模式的原因。
2、把volatile写和volatile读这两个操作综合起来看,在读线程B读一个volatile变量后,写线程A在写这个volatile变量之前,所有可见的共享变量的值都将立即变得对读线程B可见。
3、 在java5之前对final字段的同步语义和其它变量没有什么区别,在java5中,final变量一旦在构造函数中设置完成(前提是在构造函数中没有泄露this引用),其它线程必定会看到在构造函数中设置的值。而DCL的问题正好在于看到对象的成员变量的默认值,因此我们可以将LazySingleton的someField变量设置成final,这样在java5中就能够正确运行了。
参考资料:http://www.iteye.com/topic/260515/
《深入理解Java虚拟机——JVM高级特性与最佳实践》第12章