通过百度,搜索到了球面直线距离计算公式
比如你要求point1(lng1,lat1) 和 point2(lng2,lat2)的距离Distance,那么
Distance = R*arccos(cos(lat1*pi/180 )*cos(lat2*pi/180)*cos(lng1*pi/180 -lng2*pi/180)+sin(lat1*pi/180 )*sin(lat2*pi/180))
其中,R=6370996.81 是地球半径,pi为圆周率π,(lng1,lat1),(lng2,lat2)分别是point1和point2的经纬度
R = 6371004 #The radius of the earth PI = 3.1415926 MAX_NUM = 10000 def get_distance(points): length = len(points) if length <= 1: raise PathException('The length of points must be greater than or equal to 2') distance = [[0 for col in range(length)] for row in range(length)] for i in range(0,length-1): for j in range(i+1,length): f1 = points[i].find('(') + 1 f2 = points[i].find(',') f3 = points[i].find(')') lnga = float(points[i][f1:f2]) * PI /180 lngb = float(points[j][f1:f2]) * PI /180 lata = float(points[i][f2+1:f3]) * PI /180 latb = float(points[j][f2+1:f3]) * PI /180 C1 = math.cos(lata)*math.cos(latb)*math.cos(lnga-lngb) C2 = C1 + math.sin(lata)*math.sin(latb) D = R * math.acos(C2) distance[i][j] = round(D,2) distance[j][i] = distance[i][j] distance[i][i] = MAX_NUM distance[length-1][length-1] = MAX_NUM return distance
points = ['Point(123.4201360000,41.7713180000)',#致用路 1
'Point(123.4264960000,41.7752190000)',#北门 2
'Point(123.4262980000,41.7736180000)',#信息科学与工程学院 3
'Point(123.4262620000,41.7722200000)',#恩承图书馆 4
'Point(123.4279150000,41.7706590000)',#材料与冶金学院 5
'Point(123.4250770000,41.7693010000)',#求实路 6
'Point(123.4289570000,41.7684940000)',#知行楼 7
'Point(123.4234060000,41.7722200000)'#汉卿北路 左8
'Point(123.4292630000,41.7719100000)' #汉卿北路 右8
]