Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7 and target 7,
A solution set is:
[7]
[2, 2, 3]
这道题看过好几次最开始都没看出怎么做就一直留着,结果今天在做Subsets 这道题时找到了灵感,使用深度优先的方法搜索,并且用一个vector记录向量,找到合适的向量时即将它保存在结果中,并进行回溯操作。这道题相比于Subsets中使用回溯法而言更麻烦一些。以后需要注意这种解题方法,当要求解的结果是一系列向量的集合时使用dfs搜索记录路径这种方法。对于输入candidates=[1,2] ,target=3,遍历的方向如图:
runtime:28ms
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> result;
vector<int> path;
sort(candidates.begin(),candidates.end());
helper(candidates,0,0,target,path,result);
return result;
}
void helper(vector<int> &nums,int pos,int base,int target,vector<int>& path,vector<vector<int>> & result)
{
if(base==target)
{
result.push_back(path);
return ;
}
if(base>target)
return ;
for(int i=pos;i<nums.size();i++)
{
path.push_back(nums[i]);
helper(nums,i,base+nums[i],target,path,result);
path.pop_back();
}
}
};