LeetCode:Longest Increasing Path in a Matrix

Longest Increasing Path in a Matrix




Total Accepted: 15060  Total Submissions: 46586  Difficulty: Hard

Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move 

outside of the boundary (i.e. wrap-around is not allowed).

Example 1:

nums = [
  [9,9,4],
  [6,6,8],
  [2,1,1]
]

Return 4
The longest increasing path is [1, 2, 6, 9].

Example 2:

nums = [
  [3,4,5],
  [3,2,6],
  [2,2,1]
]

Return 4
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.

Subscribe to see which companies asked this question

Hide Tags
  Depth-first Search Topological Sort Memoization







































思路:

DFS.


java code:

public class Solution {
    
    public int longestIncreasingPath(int[][] matrix) {
        
        if(matrix == null || matrix.length == 0) return 0;
        int rows = matrix.length;
        int cols = matrix[0].length;
        
        int[][] maxLen = new int[rows][cols];
        
        int ans = 1;
        for(int i=0;i<rows;i++) {
            for(int j=0;j<cols;j++) {
                ans = Math.max(ans, DFS(matrix, maxLen, i, j, rows, cols));
            }
        }
        return ans;
    }
    
    // 自定义函数
    
    private static final int[][] dirs = {{0,-1},{0,1},{-1,0},{1,0}}; // 方向
    
    private int DFS(int[][] matrix, int[][] maxLen, int i, int j, int rows, int cols) {
        
        if(maxLen[i][j] != 0) return maxLen[i][j];
        
        int max = 1;
        for(int[] dir : dirs) {
            int x = i + dir[0], y = j + dir[1];
            if(x < 0 || x >= rows || y < 0 || y >= cols) continue;
            if(matrix[i][j] <= matrix[x][y]) continue;
            
            max = Math.max(max, 1 + DFS(matrix, maxLen, x, y, rows, cols));
        }
        maxLen[i][j] = max;
        return max;
    }
    
    
}


你可能感兴趣的:(LeetCode,search,sort,Topological,memoization,Depth-first)