近日,需要用ParMetis对大图数据进行分区,其输入是无向图(邻接表形式)且按照顶点ID排序,于是想到用Hadoop中的TeraSort算法对无向图进行排序。但Hadoop自带TeraSort算法是按照每行数据的前两个字符排序的,不能满足要求。
由于图一般都是用邻接表的形式存储,改进的TeraSort算法就是按照顶点ID进行排序,支持有向图和无向图,边上可附加权值。下面以无向图为例讲述数据的输入格式。对于下图,
其输入数据格式如下,以 \t 间隔,每行第一列为顶点ID。
1 2 3 4
3 1 2
2 1 3 4
4 1 2
扩展:只要每行的数据格式满足:key+“\t”+value,其中key为int或long型,value类型任意。修改的TeraSort算法就能按照key来对每一行进行排序。
1. 由于输入格式变化,故首先修改TeraRecordReader类,主要是 boolean next(LongWritable key, Text value)方法,修改如何解析每行数据。代码如下:
public boolean next(LongWritable key, Text value) throws IOException { if (in.next(junk, line)) { String[] temp=line.toString().split("\t"); key.set(Long.parseLong(temp[0])); if(temp.length!=1) { value.set(line.toString().substring(temp[0].length()+1)); } else { value.set(""); } return true; } else { return false; } }2. JobClient端的数据采样、排序、获取分割点等都和原TeraSort算法类似,注意把key的类型由Text修改为LongWritable类型。
3. 在原TeraSort算法中,每个map task首先从分布式缓存中读取分割点,然后根据分割点简历2-Trie树。map task从split中依次读入每条数据,通过Trie树查找每条记录所对应的reduce task编号。
现在由于是Long型,则不需要构建Trie树。已知分割点是存储在splitPoints[]数组中,按照如下公式计算reduce number,其中length等于splitPoints.length
假设reduce task数目为4(由用户设置),分割点为34、67、97。则分割点和reduce task编号的映射关系如下:
可以看到小于34的对应第0个reduce task,34和67之间的对应第一个reduce task,67和97之间的key对应第2个reduce task,大于等于97的则对应于第3个reduce task。
主要修改int getPartition(LongWritable key, Text value, int numPartitions)方法,如下:
@Override public int getPartition(LongWritable key, Text value, int numPartitions) { if(key.get()<splitPoints[0].get()) { return 0; } for(int i=0;i<splitPoints.length-1;i++) { if(key.get()>=splitPoints[i].get() && key.get()<splitPoints[i+1].get()) { return i+1; } } return splitPoints.length; }4. 弃用TeraOutputFormat,采用默认的输出格式就行。
job.setOutputFormat(TextOutputFormat.class);
5. 打成Jar包(TeraSort.jar),在集群上运行即可。例如:hadoop jar TeraSort.jar TeraSortTest output 4
注意输入参数为:<input> <output> <reduce number> 。与原TeraSort中用 -D mapred.reduce.tasks=value 不同,此处让用户明确指定reduce tash的数目。防止用户忘写的话,原TeraSort就启动一个reduce task,那么整个TeraSort算法就失去意义! 运行结果如下:
6. 上述排好序的文件,依次存在output文件夹下的:part-00000、part-00001、part-00002、part-00003。
使用 hadoop fs -getmerge output output-total 命令后,所有数据都会有序汇总到output-total文件中。
getmerge会按照part-00000、part-00001、part-00002、part-00003的顺序依次把每个文件输出到output-total文件中。代码如下:
/** Copy all files in a directory to one output file (merge). */ public static boolean copyMerge(FileSystem srcFS, Path srcDir, FileSystem dstFS, Path dstFile, boolean deleteSource, Configuration conf, String addString) throws IOException { dstFile = checkDest(srcDir.getName(), dstFS, dstFile, false); if (!srcFS.getFileStatus(srcDir).isDir()) return false; OutputStream out = dstFS.create(dstFile); try { FileStatus contents[] = srcFS.listStatus(srcDir); for (int i = 0; i < contents.length; i++) { if (!contents[i].isDir()) { InputStream in = srcFS.open(contents[i].getPath()); try { IOUtils.copyBytes(in, out, conf, false); if (addString!=null) out.write(addString.getBytes("UTF-8")); } finally { in.close(); } } } } finally { out.close(); }
1. TeraInputFormat.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.undirected.graph.sort; import java.io.IOException; import java.util.ArrayList; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.SequenceFile; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileSplit; import org.apache.hadoop.mapred.InputSplit; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.LineRecordReader; import org.apache.hadoop.mapred.RecordReader; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.util.IndexedSortable; import org.apache.hadoop.util.QuickSort; /** * An input format that reads the first 10 characters of each line as the key * and the rest of the line as the value. Both key and value are represented * as Text. */ public class TeraInputFormat extends FileInputFormat<LongWritable,Text> { static final String PARTITION_FILENAME = "_partition.lst"; static final String SAMPLE_SIZE = "terasort.partitions.sample"; private static JobConf lastConf = null; private static InputSplit[] lastResult = null; static class TextSampler implements IndexedSortable { private ArrayList<LongWritable> records = new ArrayList<LongWritable>(); public int compare(int i, int j) { LongWritable left = records.get(i); LongWritable right = records.get(j); return left.compareTo(right); } public void swap(int i, int j) { LongWritable left = records.get(i); LongWritable right = records.get(j); records.set(j, left); records.set(i, right); } public void addKey(LongWritable key) { records.add(key); } /** * Find the split points for a given sample. The sample keys are sorted * and down sampled to find even split points for the partitions. The * returned keys should be the start of their respective partitions. * @param numPartitions the desired number of partitions * @return an array of size numPartitions - 1 that holds the split points */ LongWritable[] createPartitions(int numPartitions) { int numRecords = records.size(); System.out.println("Making " + numPartitions + " from " + numRecords + " records"); if (numPartitions > numRecords) { throw new IllegalArgumentException ("Requested more partitions than input keys (" + numPartitions + " > " + numRecords + ")"); } new QuickSort().sort(this, 0, records.size()); float stepSize = numRecords / (float) numPartitions; System.out.println("Step size is " + stepSize); LongWritable[] result = new LongWritable[numPartitions-1]; for(int i=1; i < numPartitions; ++i) { result[i-1] = records.get(Math.round(stepSize * i)); } // System.out.println("result :"+Arrays.toString(result)); return result; } } /** * Use the input splits to take samples of the input and generate sample * keys. By default reads 100,000 keys from 10 locations in the input, sorts * them and picks N-1 keys to generate N equally sized partitions. * @param conf the job to sample * @param partFile where to write the output file to * @throws IOException if something goes wrong */ public static void writePartitionFile(JobConf conf, Path partFile) throws IOException { TeraInputFormat inFormat = new TeraInputFormat(); TextSampler sampler = new TextSampler(); LongWritable key = new LongWritable(); Text value = new Text(); int partitions = conf.getNumReduceTasks(); long sampleSize = conf.getLong(SAMPLE_SIZE, 100000); InputSplit[] splits = inFormat.getSplits(conf, conf.getNumMapTasks()); int samples = Math.min(10, splits.length); long recordsPerSample = sampleSize / samples; int sampleStep = splits.length / samples; long records = 0; // take N samples from different parts of the input for(int i=0; i < samples; ++i) { RecordReader<LongWritable,Text> reader = inFormat.getRecordReader(splits[sampleStep * i], conf, null); while (reader.next(key, value)) { sampler.addKey(key); key=new LongWritable(); records += 1; if ((i+1) * recordsPerSample <= records) { break; } } } FileSystem outFs = partFile.getFileSystem(conf); if (outFs.exists(partFile)) { outFs.delete(partFile, false); } SequenceFile.Writer writer = SequenceFile.createWriter(outFs, conf, partFile, LongWritable.class, NullWritable.class); NullWritable nullValue = NullWritable.get(); for(LongWritable split : sampler.createPartitions(partitions)) { writer.append(split, nullValue); } writer.close(); } static class TeraRecordReader implements RecordReader<LongWritable,Text> { private LineRecordReader in; private LongWritable junk = new LongWritable(); private Text line = new Text(); public TeraRecordReader(Configuration job, FileSplit split) throws IOException { in = new LineRecordReader(job, split); } public void close() throws IOException { in.close(); } public LongWritable createKey() { return new LongWritable(); } public Text createValue() { return new Text(); } public long getPos() throws IOException { return in.getPos(); } public float getProgress() throws IOException { return in.getProgress(); } public boolean next(LongWritable key, Text value) throws IOException { if (in.next(junk, line)) { String[] temp=line.toString().split("\t"); key.set(Long.parseLong(temp[0])); if(temp.length!=1) { value.set(line.toString().substring(temp[0].length()+1)); } else { value.set(""); } return true; } else { return false; } } } @Override public RecordReader<LongWritable, Text> getRecordReader(InputSplit split, JobConf job, Reporter reporter) throws IOException { return new TeraRecordReader(job, (FileSplit) split); } @Override public InputSplit[] getSplits(JobConf conf, int splits) throws IOException { if (conf == lastConf) { return lastResult; } lastConf = conf; lastResult = super.getSplits(conf, splits); return lastResult; } }
package com.undirected.graph.sort; import java.io.IOException; import java.net.URI; import java.util.ArrayList; import java.util.List; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.SequenceFile; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.Partitioner; import org.apache.hadoop.mapred.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; public class TeraSort extends Configured implements Tool{ private static final Log LOG = LogFactory.getLog(TeraSort.class); /** * A partitioner that splits text keys into roughly equal partitions * in a global sorted order. */ static class TotalOrderPartitioner implements Partitioner<LongWritable,Text>{ private LongWritable[] splitPoints; /** * Read the cut points from the given sequence file. * @param fs the file system * @param p the path to read * @param job the job config * @return the strings to split the partitions on * @throws IOException */ private static LongWritable[] readPartitions(FileSystem fs, Path p, JobConf job) throws IOException { SequenceFile.Reader reader = new SequenceFile.Reader(fs, p, job); List<LongWritable> parts = new ArrayList<LongWritable>(); LongWritable key = new LongWritable(); NullWritable value = NullWritable.get(); while (reader.next(key, value)) { parts.add(key); key = new LongWritable(); } reader.close(); return parts.toArray(new LongWritable[parts.size()]); } @Override public void configure(JobConf job) { try { FileSystem fs = FileSystem.getLocal(job); Path partFile = new Path(TeraInputFormat.PARTITION_FILENAME); splitPoints = readPartitions(fs, partFile, job); } catch (IOException ie) { throw new IllegalArgumentException("can't read paritions file", ie); } } @Override public int getPartition(LongWritable key, Text value, int numPartitions) { if(key.get()<splitPoints[0].get()) { return 0; } for(int i=0;i<splitPoints.length-1;i++) { if(key.get()>=splitPoints[i].get() && key.get()<splitPoints[i+1].get()) { return i+1; } } return splitPoints.length; } } @Override public int run(String[] args) throws Exception { LOG.info("starting"); JobConf job = (JobConf) getConf(); Path inputDir = new Path(args[0]); inputDir = inputDir.makeQualified(inputDir.getFileSystem(job)); Path partitionFile = new Path(inputDir, TeraInputFormat.PARTITION_FILENAME); URI partitionUri = new URI(partitionFile.toString() + "#" + TeraInputFormat.PARTITION_FILENAME); TeraInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setNumReduceTasks(Integer.parseInt(args[2])); job.setJobName("TeraSort"); job.setJarByClass(TeraSort.class); job.setOutputKeyClass(LongWritable.class); job.setOutputValueClass(Text.class); job.setInputFormat(TeraInputFormat.class); job.setOutputFormat(TextOutputFormat.class); job.setPartitionerClass(TotalOrderPartitioner.class); TeraInputFormat.writePartitionFile(job, partitionFile); DistributedCache.addCacheFile(partitionUri, job); DistributedCache.createSymlink(job); job.setInt("dfs.replication", 1); JobClient.runJob(job); LOG.info("done"); return 0; } /** * @param args */ public static void main(String[] args) throws Exception { if(args.length<3) { System.out.println("Usage:<input> <output> <reduce number>"); System.exit(-1); } int res = ToolRunner.run(new JobConf(), new TeraSort(), args); System.exit(res); } }