Hadoop2.2内存调优

今天散仙写了个MapReduce作业,目的是读数据库里面多个表的数据,然后在JAVA中根据具体的业务情况做过滤,并把符合数据的结果写入到HDFS上,在Eclipse里面提交作业进行调试的时候,发现在Reduce阶段,总是抛出Java heap space的异常,这异常明显,就是堆内存溢出造成的,然后散仙仔细看了下业务块的代码,在Reduce里读数据库的时候,有几个表的返回数据量比较大约有50万左右,因为具体的数量不会太大,所以没有采用分页来返回,读完后数据,采用Map集合封装,在业务处理的一段时间里,一直会停留在内存里,原来的mapred-site.xml里面的配置reduce内存比较小,只需调大此处内存即可。

<property>
 <name>mapreduce.map.memory.mb</name>
 <value>215</value>
</property>
<property>
 <name>mapreduce.map.java.opts</name>
 <value>-Xmx215M</value>
</property>

<property>
 <name>mapreduce.reduce.memory.mb</name>
 <value>1024</value>
</property>
<property>
 <name>mapreduce.reduce.java.opts</name>
 <value>-Xmx1024M</value>
</property>

hadoop2.2内存控制的几个重要参数:

YARN
yarn.scheduler.minimum-allocation-mb
yarn.scheduler.maximum-allocation-mb
yarn.nodemanager.vmem-pmem-ratio
yarn.nodemanager.resource.memory.mb
Mapreuce
Map Memory
mapreduce.map.java.opts
mapreduce.map.memory.mb
Reduce Memory
mapreduce.reduce.java.opts
mapreduce.reduce.memory.mb

如果出现异常:

Container [pid=17645,containerID=container_1415210272486_0013_01_000004] is running beyond physical memory limits. Current usage: 1.0 GB of 1 GB physical memory used; 1.6 GB of 2.1 GB virtual memory used. Killing container.
Dump of the process-tree for container_1415210272486_0013_01_000004 :

可以调整yarn.nodemanager.vmem-pmem-ratio 的比率,默认是2.1,或者加大程序reduce的运行个数进行尝试,这个比率的控制影响着虚拟内存的使用,当yarn计算出来的虚拟内存,比在mapred-site.xml里的mapreduce.map.memory.mb或mapreduce.reduce.memory.mb的2.1倍还要多时,就会发生上面截图中的异常,而默认的mapreduce.map.memory.mb或

mapreduce.reduce.memory.mb得初始大小为1024M,然后根据异常中的yarn自身根据运行环境推算出来的虚拟内存来做比较,发现比1024*2.1还要大,所以就会由NodeManage守护进程kill掉AM容器,从而导致整个MR作业运行失败,现在我们只需要调大这个比率即可,避免发生这种异常。具体调大多小,可根据具体情况来设置。


你可能感兴趣的:(Hadoop2.2内存调优)