linux 线程同步的三种方法

线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点。linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。

一、互斥锁(mutex)

通过锁机制实现线程间的同步。

  1. 初始化锁。在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。
    静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
    动态分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
  2. 加锁。对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。
    int pthread_mutex_lock(pthread_mutex *mutex);
    int pthread_mutex_trylock(pthread_mutex_t *mutex);
  3. 解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。
    int pthread_mutex_unlock(pthread_mutex_t *mutex);
  4. 销毁锁。锁在是使用完成后,需要进行销毁以释放资源。
    int pthread_mutex_destroy(pthread_mutex *mutex);
    1. #include <cstdio>
    2. #include <cstdlib>
    3. #include <unistd.h>
    4. #include <pthread.h>
    5. #include "iostream"
    6. using namespace std;
    7. pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
    8. int tmp;
    9. void* thread(void *arg)
    10. {
    11.     cout << "thread id is " << pthread_self() << endl;
    12.     pthread_mutex_lock(&mutex);
    13.     tmp = 12;
    14.     cout << "Now a is " << tmp << endl;
    15.     pthread_mutex_unlock(&mutex);
    16.     return NULL;
    17. }
    18. int main()
    19. {
    20.     pthread_t id;
    21.     cout << "main thread id is " << pthread_self() << endl;
    22.     tmp = 3;
    23.     cout << "In main func tmp = " << tmp << endl;
    24.     if (!pthread_create(&id, NULL, thread, NULL))
    25.     {
    26.         cout << "Create thread success!" << endl;
    27.     }
    28.     else
    29.     {
    30.         cout << "Create thread failed!" << endl;
    31.     }
    32.     pthread_join(id, NULL);
    33.     pthread_mutex_destroy(&mutex);
    34.     return 0;
    35. }
    36. //编译:g++ -o thread testthread.cpp -lpthread

二、条件变量(cond)

互斥锁不同,条件变量是用来等待而不是用来上锁的。条件变量用来自动阻塞一个线程,直到某特殊情况发生为止。通常条件变量和互斥锁同时使用。条件变量分为两部分: 条件和变量。条件本身是由互斥量保护的。线程在改变条件状态前先要锁住互斥量。条件变量使我们可以睡眠等待某种条件出现。条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。条件的检测是在互斥锁的保护下进行的。如果一个条件为假,一个线程自动阻塞,并释放等待状态改变的互斥锁。如果另一个线程改变了条件,它发信号给关联的条件变量,唤醒一个或多个等待它的线程,重新获得互斥锁,重新评价条件。如果两进程共享可读写的内存,条件变量可以被用来实现这两进程间的线程同步。

  1. 初始化条件变量。
    静态态初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
    动态初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
  2. 等待条件成立。释放锁,同时阻塞等待条件变量为真才行。timewait()设置等待时间,仍未signal,返回ETIMEOUT(加锁保证只有一个线程wait)
    int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
    int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
  3. 激活条件变量。pthread_cond_signal,pthread_cond_broadcast(激活所有等待线程)
    int pthread_cond_signal(pthread_cond_t *cond);
    int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有线程的阻塞
  4. 清除条件变量。无线程等待,否则返回EBUSY
    int pthread_cond_destroy(pthread_cond_t *cond);

    1. #include <stdio.h>
    2. #include <pthread.h>
    3. #include "stdlib.h"
    4. #include "unistd.h"
    5. pthread_mutex_t mutex;
    6. pthread_cond_t cond;
    7. void hander(void *arg)
    8. {
    9.     free(arg);
    10.     (void)pthread_mutex_unlock(&mutex);
    11. }
    12. void *thread1(void *arg)
    13. {
    14.     pthread_cleanup_push(hander, &mutex);
    15.     while(1)
    16.     {
    17.         printf("thread1 is running\n");
    18.         pthread_mutex_lock(&mutex);
    19.         pthread_cond_wait(&cond, &mutex);
    20.         printf("thread1 applied the condition\n");
    21.         pthread_mutex_unlock(&mutex);
    22.         sleep(4);
    23.     }
    24.     pthread_cleanup_pop(0);
    25. }
    26. void *thread2(void *arg)
    27. {
    28.     while(1)
    29.     {
    30.         printf("thread2 is running\n");
    31.         pthread_mutex_lock(&mutex);
    32.         pthread_cond_wait(&cond, &mutex);
    33.         printf("thread2 applied the condition\n");
    34.         pthread_mutex_unlock(&mutex);
    35.         sleep(1);
    36.     }
    37. }
    38. int main()
    39. {
    40.     pthread_t thid1,thid2;
    41.     printf("condition variable study!\n");
    42.     pthread_mutex_init(&mutex, NULL);
    43.     pthread_cond_init(&cond, NULL);
    44.     pthread_create(&thid1, NULL, thread1, NULL);
    45.     pthread_create(&thid2, NULL, thread2, NULL);
    46.     sleep(1);
    47.     do
    48.     {
    49.         pthread_cond_signal(&cond);
    50.     }while(1);
    51.     sleep(20);
    52.     pthread_exit(0);
    53.     return 0;
    54. }


  1. #include <pthread.h>
  2. #include <unistd.h>
  3. #include "stdio.h"
  4. #include "stdlib.h"
  5. static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
  6. static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
  7. struct node
  8. {
  9.     int n_number;
  10.     struct node *n_next;
  11. }*head = NULL;

  12. static void cleanup_handler(void *arg)
  13. {
  14.     printf("Cleanup handler of second thread./n");
  15.     free(arg);
  16.     (void)pthread_mutex_unlock(&mtx);
  17. }
  18. static void *thread_func(void *arg)
  19. {
  20.     struct node *p = NULL;
  21.     pthread_cleanup_push(cleanup_handler, p);
  22.     while (1)
  23.     {
  24.         //这个mutex主要是用来保证pthread_cond_wait的并发性
  25.         pthread_mutex_lock(&mtx);
  26.         while (head == NULL)
  27.         {
  28.             //这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何
  29.             //这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线
  30.             //程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。
  31.             //这个时候,应该让线程继续进入pthread_cond_wait
  32.             // pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,
  33.             //然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立
  34.             //而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源
  35.             //用这个流程是比较清楚的
  36.             pthread_cond_wait(&cond, &mtx);
  37.             p = head;
  38.             head = head->n_next;
  39.             printf("Got %d from front of queue/n", p->n_number);
  40.             free(p);
  41.         }
  42.         pthread_mutex_unlock(&mtx); //临界区数据操作完毕,释放互斥锁
  43.     }
  44.     pthread_cleanup_pop(0);
  45.     return 0;
  46. }
  47. int main(void)
  48. {
  49.     pthread_t tid;
  50.     int i;
  51.     struct node *p;
  52.     //子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而
  53.     //不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大
  54.     pthread_create(&tid, NULL, thread_func, NULL);
  55.     sleep(1);
  56.     for (i = 0; i < 10; i++)
  57.     {
  58.         p = (struct node*)malloc(sizeof(struct node));
  59.         p->n_number = i;
  60.         pthread_mutex_lock(&mtx); //需要操作head这个临界资源,先加锁,
  61.         p->n_next = head;
  62.         head = p;
  63.         pthread_cond_signal(&cond);
  64.         pthread_mutex_unlock(&mtx); //解锁
  65.         sleep(1);
  66.     }
  67.     printf("thread 1 wanna end the line.So cancel thread 2./n");
  68.     //关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出
  69.     //线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。
  70.     pthread_cancel(tid);
  71.     pthread_join(tid, NULL);
  72.     printf("All done -- exiting/n");
  73.     return 0;
  74. }

 

三、信号量(sem)

如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以"sem_"打头。线程使用的基本信号量函数有四个。

  1. 信号量初始化。
    int sem_init (sem_t *sem , int pshared, unsigned int value);
    这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。
  2. 等待信号量。给信号量减1,然后等待直到信号量的值大于0。
    int sem_wait(sem_t *sem);
  3. 释放信号量。信号量值加1。并通知其他等待线程。
    int sem_post(sem_t *sem);
  4. 销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。
    int sem_destroy(sem_t *sem);
    1. #include <stdlib.h>
    2. #include <stdio.h>
    3. #include <unistd.h>
    4. #include <pthread.h>
    5. #include <semaphore.h>
    6. #include <errno.h>
    7. #define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
    8. typedef struct _PrivInfo
    9. {
    10.     sem_t s1;
    11.     sem_t s2;
    12.     time_t end_time;
    13. }PrivInfo;

    14. static void info_init (PrivInfo* thiz);
    15. static void info_destroy (PrivInfo* thiz);
    16. static void* pthread_func_1 (PrivInfo* thiz);
    17. static void* pthread_func_2 (PrivInfo* thiz);

    18. int main (int argc, char** argv)
    19. {
    20.     pthread_t pt_1 = 0;
    21.     pthread_t pt_2 = 0;
    22.     int ret = 0;
    23.     PrivInfo* thiz = NULL;
    24.     thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
    25.     if (thiz == NULL)
    26.     {
    27.         printf ("[%s]: Failed to malloc priv./n");
    28.         return -1;
    29.     }
    30.     info_init (thiz);
    31.     ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
    32.     if (ret != 0)
    33.     {
    34.         perror ("pthread_1_create:");
    35.     }
    36.     ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
    37.     if (ret != 0)
    38.     {
    39.         perror ("pthread_2_create:");
    40.     }
    41.     pthread_join (pt_1, NULL);
    42.     pthread_join (pt_2, NULL);
    43.     info_destroy (thiz);
    44.     return 0;
    45. }
    46. static void info_init (PrivInfo* thiz)
    47. {
    48.     return_if_fail (thiz != NULL);
    49.     thiz->end_time = time(NULL) + 10;
    50.     sem_init (&thiz->s1, 0, 1);
    51.     sem_init (&thiz->s2, 0, 0);
    52.     return;
    53. }
    54. static void info_destroy (PrivInfo* thiz)
    55. {
    56.     return_if_fail (thiz != NULL);
    57.     sem_destroy (&thiz->s1);
    58.     sem_destroy (&thiz->s2);
    59.     free (thiz);
    60.     thiz = NULL;
    61.     return;
    62. }
    63. static void* pthread_func_1 (PrivInfo* thiz)
    64. {
    65.     return_if_fail(thiz != NULL);
    66.     while (time(NULL) < thiz->end_time)
    67.     {
    68.         sem_wait (&thiz->s2);
    69.         printf ("pthread1: pthread1 get the lock./n");
    70.         sem_post (&thiz->s1);
    71.         printf ("pthread1: pthread1 unlock/n");
    72.         sleep (1);
    73.     }
    74.     return;
    75. }
    76. static void* pthread_func_2 (PrivInfo* thiz)
    77. {
    78.     return_if_fail (thiz != NULL);
    79.     while (time (NULL) < thiz->end_time)
    80.     {
    81.         sem_wait (&thiz->s1);
    82.         printf ("pthread2: pthread2 get the unlock./n");
    83.         sem_post (&thiz->s2);
    84.         printf ("pthread2: pthread2 unlock./n");
    85.         sleep (1);
    86.     }
    87.     return;
    88. }

你可能感兴趣的:(linux 线程同步的三种方法)