http://www.patest.cn/contests/mooc-ds/01-1
给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
输入格式:
输入第1行给出正整数 K (<= 100000);第2行给出K个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:6 -2 11 -4 13 -5 -2输出样例:
20
O(n*3)解法:
#include <stdio.h> #define MAXN 100001 long long maxSubseqSum1(int a[], int n){ long long maxSum = 0; for(int i = 0; i < n; ++i){ for(int j = i; j < n; ++j){ long long thisSum = 0; for(int k = i; k <= j; ++k){ thisSum += a[k]; if(thisSum > maxSum) maxSum = thisSum; } } } return maxSum; } int main(){ int k, a[MAXN]; scanf("%d", &k); for(int i = 0; i < k; ++i) scanf("%d", &a[i]); printf("%lld\n", maxSubseqSum1(a, k)); return 0; }
O(n*2)解法:
#include <stdio.h> #define MAXN 100001 long long maxSubseqSum2(int a[], int n){ long long maxSum = 0; for(int i = 0; i < n; ++i){ long long thisSum = 0; for(int j = i; j <= n; ++j){ thisSum += a[j]; if(thisSum > maxSum) maxSum = thisSum; if(thisSum < 0) thisSum = 0; } } return maxSum; } int main(){ int k, a[MAXN]; scanf("%d", &k); for(int i = 0; i < k; ++i) scanf("%d", &a[i]); printf("%lld\n", maxSubseqSum2(a, k)); return 0; }
分治算法 O(nlogn)解法:
#include <stdio.h> #include <vector> #include <iostream> using namespace std; long long max(long long a, long long b, long long c){ if(b > a) a = b; if(a > c) return a; else return c; } long long maxSubseqSum(const vector<int> &a, int left, int right){ if(left == right){ if(a[left] > 0) return a[left]; else return 0; } int mid = (left + right) / 2; long long maxLeftSum = maxSubseqSum(a, left, mid); long long maxRightSum = maxSubseqSum(a, mid+1, right); long long maxLeftBorderSum = 0, leftBorderSum = 0; for(int i = mid; i >= left; --i){ leftBorderSum += a[i]; if(leftBorderSum > maxLeftBorderSum) maxLeftBorderSum = leftBorderSum; } long long maxRightBorderSum = 0, rightBorderSum = 0; for(int i = mid+1; i <= right; ++i){ rightBorderSum += a[i]; if(rightBorderSum > maxRightBorderSum) maxRightBorderSum = rightBorderSum; } return max(maxLeftSum, maxRightSum, maxLeftBorderSum+maxRightBorderSum); } int main(){ vector<int> a; int k, x; scanf("%d", &k); for(int i = 0; i < k; ++i){ cin >> x; a.push_back(x); } printf("%lld\n", maxSubseqSum(a, 0, a.size() - 1)); return 0; }
#include <stdio.h> #define MAXN 100001 long long maxSubseqSum(int a[], int n){ long long thisSum = 0, maxSum = 0; for(int i = 0; i < n; ++i){ thisSum += a[i]; if(thisSum > maxSum) maxSum = thisSum; else if(thisSum < 0) thisSum = 0; } return maxSum; } int main(){ int k, a[MAXN]; scanf("%d", &k); for(int i = 0; i < k; ++i) scanf("%d", &a[i]); printf("%lld\n", maxSubseqSum(a, k)); return 0; }