Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...
) which sum to n.
For example, given n = 12
, return 3
because 12 = 4 + 4 + 4
; given n = 13
, return 2
because 13 = 4 + 9
.
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
Subscribe to see which companies asked this question
思路:
dp[0] = 0
dp[1] = dp[0]+1 = 1
dp[2] = dp[1]+1 = 2
dp[3] = dp[2]+1 = 3
dp[4] = Min{ dp[4-1*1]+1, dp[4-2*2]+1 }
= Min{ dp[3]+1, dp[0]+1 }
= 1
dp[5] = Min{ dp[5-1*1]+1, dp[5-2*2]+1 }
= Min{ dp[4]+1, dp[1]+1 }
= 2
.
.
.
dp[13] = Min{ dp[13-1*1]+1, dp[13-2*2]+1, dp[13-3*3]+1 }
= Min{ dp[12]+1, dp[9]+1, dp[4]+1 }
= 2
.
.
.
dp[n] = Min{ dp[n - i*i] + 1 }, n - i*i >=0 && i >= 1
java code:
public class Solution { public int numSquares(int n) { int[] dp = new int[n+1]; dp[0] = 0; for(int i=1;i<=n;i++) { int min = (1<<31)-1; for(int j=1;j<=i;j++) { if(j*j <= i) { min = Math.min(min, dp[i-j*j] + 1); } } dp[i] = min; } return dp[n]; } }