来源:于争博士《信号完整性研究》http://www.sig007.com
在前文中我提到过,要重视信号上升时间,很多信号完整性问题都是由信号上升时间短引起的。本文就谈谈一个基础概念:信号上升时间和信号带宽的关系。
对于数字电路,输出的通常是方波信号。方波的上升边沿非常陡峭,根据傅立叶分析,任何信号都可以分解成一系列不同频率的正弦信号,方波中包含了非常丰富的频谱成分。
抛开枯燥的理论分析,我们用实验来直观的分析方波中的频率成分,看看不同频率的正弦信号是如何叠加成为方波的。首先我们把一个1.65v 的直流和一个100MHz 的正弦波形叠加,得到一个直流偏置为1.65v 的单频正弦波。我们给这一信号叠加整数倍频率的正弦信号,也就是通常所说的谐波。3 次谐波的频率为300MHz,5 次谐波的频率为500MHz,以此类推,高次谐波都是100MHz 的整数倍。图1 是叠加不同谐波前后的比较,左上角的是直流偏置的100MHz 基频波形,右上角时基频叠加了3 次谐波后的波形,有点类似于方波了。左下角是基频+3 次谐波+5 次谐波的波形,右下角是基频+3 次谐波+5 次谐波+7 次谐波的波形。这里可以直观的看到叠加的谐波成分越多,波形就越像方波。
因此如果叠加足够多的谐波,我们就可以近似的合成出方波。图2 是叠加到217 次谐波后的波形。已经非常近似方波了,不用关心角上的那些毛刺,那是著名的吉博斯现象,这种仿真必然会有的,但不影响对问题的理解。这里我们叠加谐波的最高频率达到了21.7GHz。
上面的实验非常有助于我们理解方波波形的本质特征,理想的方波信号包含了无穷多的谐波分量,可以说带宽是无限的。实际中的方波信号与理想方波信号有差距,但有一点是共同的,就是所包含频率很高的频谱成分。
clc; clear all; pack; Fs = 10e9; Nsamp = 2e4; t = [0:Nsamp-1].*(1/Fs); f1 = 1e6; x0 = 3.3/2; x1 = x0 + 1.65*sin(2*pi*f1*t); x3 = x0; for n=1:2:3 x3 = x3 + 3.3*2/(pi*n) * sin(2*pi*n*f1*t); end x5 = x0; for n=1:2:5 x5 = x5 + 3.3*2/(pi*n) * sin(2*pi*n*f1*t); end x7 = x0; for n=1:2:7 x7 = x7 + 3.3*2/(pi*n) * sin(2*pi*n*f1*t); end figure subplot(221) plot(x1) subplot(222) plot(x3) subplot(223) plot(x5) subplot(224) plot(x7) x217 = x0; for n=1:2:217 x217 = x217 + 3.3*2/(pi*n) * sin(2*pi*n*f1*t); end figure plot(x217) figure plot(x217,'k') hold on plot(x1,'b') plot(x3,'g') plot(x7,'r') hold off axis([8000 12000 -0.5 4])