erlang中不能没有消息和异步过程,NIF也必须有此项能力,这个能力是通过enif_send实现的,它可以在NIF中向一个进程发送消息,但由于消息本身需要跨进程传递,消息的生命周期可能很长,而在erlang NIF部分接口实现(一)中可以看到,NIF每次调用所使用的ErlNifEnv结构是位于process_main函数的栈上的,由这个ErlNifEnv结构分配消息所占用的内存是不可能的,因此需要一个长期存在的ErlNifEnv结构来回收消息的内存,而ErlNifEnv结构是附着于一个进程的,同时也需要一个Process结构,产生分配内存的堆。
为了构建这个长期存在的ErlNifEnv结构,需要能够动态的分配ErlNifEnv结构:
struct enif_msg_environment_t
{
ErlNifEnv env;
Process phony_proc;
};
ErlNifEnv* enif_alloc_env(void)
{
struct enif_msg_environment_t* msg_env =
erts_alloc_fnf(ERTS_ALC_T_NIF, sizeof(struct enif_msg_environment_t));
Eterm* phony_heap = (Eterm*) msg_env; /* dummy non-NULL ptr */
msg_env->env.hp = phony_heap;
msg_env->env.hp_end = phony_heap;
msg_env->env.heap_frag = NULL;
msg_env->env.mod_nif = NULL;
msg_env->env.tmp_obj_list = NULL;
msg_env->env.proc = &msg_env->phony_proc;
memset(&msg_env->phony_proc, 0, sizeof(Process));
HEAP_START(&msg_env->phony_proc) = phony_heap;
HEAP_TOP(&msg_env->phony_proc) = phony_heap;
HEAP_LIMIT(&msg_env->phony_proc) = phony_heap;
HEAP_END(&msg_env->phony_proc) = phony_heap;
MBUF(&msg_env->phony_proc) = NULL;
msg_env->phony_proc.id = ERTS_INVALID_PID;
#ifdef FORCE_HEAP_FRAGS
msg_env->phony_proc.space_verified = 0;
msg_env->phony_proc.space_verified_from = NULL;
#endif
return &msg_env->env;
}
也可以通过enif_clear_env来清洗一个ErlNifEnv结构以重用:
void enif_clear_env(ErlNifEnv* env)
{
struct enif_msg_environment_t* menv = (struct enif_msg_environment_t*)env;
Process* p = &menv->phony_proc;
ASSERT(p == menv->env.proc);
ASSERT(p->id == ERTS_INVALID_PID);
ASSERT(MBUF(p) == menv->env.heap_frag);
if (MBUF(p) != NULL) {
erts_cleanup_offheap(&MSO(p));
clear_offheap(&MSO(p));
free_message_buffer(MBUF(p));
MBUF(p) = NULL;
menv->env.heap_frag = NULL;
}
ASSERT(HEAP_TOP(p) == HEAP_END(p));
menv->env.hp = menv->env.hp_end = HEAP_TOP(p);
ASSERT(!is_offheap(&MSO(p)));
free_tmp_objs(env);
}
int enif_send(ErlNifEnv* env, const ErlNifPid* to_pid, ErlNifEnv* msg_env, ERL_NIF_TERM msg)
{
struct enif_msg_environment_t* menv = (struct enif_msg_environment_t*)msg_env;
ErtsProcLocks rp_locks = 0;
Process* rp;
Process* c_p;
ErlHeapFragment* frags;
#if defined(ERTS_ENABLE_LOCK_CHECK) && defined(ERTS_SMP)
ErtsProcLocks rp_had_locks;
#endif
Eterm receiver = to_pid->pid;
int flush_me = 0;
if (env != NULL) {
c_p = env->proc;
if (receiver == c_p->id) {
rp_locks = ERTS_PROC_LOCK_MAIN;
flush_me = 1;
}
}
else {
#ifdef ERTS_SMP
c_p = NULL;
#else
erl_exit(ERTS_ABORT_EXIT,"enif_send: env==NULL on non-SMP VM");
#endif
}
#if defined(ERTS_ENABLE_LOCK_CHECK) && defined(ERTS_SMP)
rp_had_locks = rp_locks;
#endif
rp = erts_pid2proc_opt(c_p, ERTS_PROC_LOCK_MAIN,
receiver, rp_locks, ERTS_P2P_FLG_SMP_INC_REFC);
/* 临时增加消息目的进程的引用计数,防止在发送途中目的进程被销毁。 */
if (rp == NULL) {
ASSERT(env == NULL || receiver != c_p->id);
return 0;
}
flush_env(msg_env);
frags = menv->env.heap_frag;
ASSERT(frags == MBUF(&menv->phony_proc));
if (frags != NULL) {
/* Move all offheap's from phony proc to the first fragment.
Quick and dirty, but erts_move_msg_mbuf_to_heap doesn't care. */
ASSERT(!is_offheap(&frags->off_heap));
frags->off_heap = MSO(&menv->phony_proc);
clear_offheap(&MSO(&menv->phony_proc));
menv->env.heap_frag = NULL;
MBUF(&menv->phony_proc) = NULL;
}
ASSERT(!is_offheap(&MSO(&menv->phony_proc)));
if (flush_me) {
flush_env(env); /* Needed for ERTS_HOLE_CHECK */
}
erts_queue_message(rp, &rp_locks, frags, msg, am_undefined
#ifdef USE_VM_PROBES
, NIL
#endif
);
/* 这是erlang内部由于将消息投递到目的进程消息队列的函数 */
if (rp_locks) {
ERTS_SMP_LC_ASSERT(rp_locks == (rp_had_locks | (ERTS_PROC_LOCK_MSGQ |
ERTS_PROC_LOCK_STATUS)));
erts_smp_proc_unlock(rp, (ERTS_PROC_LOCK_MSGQ | ERTS_PROC_LOCK_STATUS));
}
erts_smp_proc_dec_refc(rp);
if (flush_me) {
cache_env(env);
}
return 1;
}
该接口的to_pid参数即为消息的目的进程,msg_env即为通过enif_alloc_env所产生的长期ErlNifEnv,通过前面的代码分析可以发现,该结构实际嵌入一个enif_msg_environment_t结构,msg参数是需要发送的消息,它是由msg_env所分配的term,消息将通过erts_queue_message转移到目的进程的消息队列中。
在有了异步消息投递能力后,NIF可以的功能将极大的丰富。