PythonCookbook——数据结构和算法

PythonCookbook学习笔记

 

第一章    数据结构和算法

 

1.1    将序列分解为单独的变量

p = (4, 5)
x, y = p
print x 
print y 

data = [ 'ACME', 50, 91.1, (2012, 12, 21) ]
name, shares, price, date = data
print name
print shares 
print price 
print date 
name, shares, price, (year, mon, day ) = data
print year 

p = (4, 5)
#x, y, z = p 错误!!!

s = 'hello!'
a, b, c, d, e, f = s
print a
print f

data = [ 'ACME', 50, 91.1, (2012, 12, 21) ]
_, shares, price, _ = data 
print shares
print price
#其他数据可以丢弃了

 1.2    从任意长度的可迭代对象中分解元素

from audioop import avg

def drop_first_last(grades):
    first, *middle, last = grades
    return avg(middle)

record = ('Dave', '[email protected]', '777-333-2323', '234-234-2345')
name, email, *phone_numbers = record
print name 
print email
print phone_numbers

*trailing, current = [10, 8, 7, 2, 5]
print trailing  #[10, 8, 7, 2, ]
print current #5

records = [
           ('foo', 1, 2),
           ('bar', 'hello'),
           ('foo', 5, 3)
           ]
def do_foo(x, y):
    print ('foo', x, y)
def do_bar(s):
    print ('bar', s)
for tag, *args in records:
    if tag == 'foo':
        do_foo(*args)
    elif tag == 'bar':
        do_bar(*args)
        
line = 'asdf:fedfr234://wef:678d:asdf'
uname, *fields, homedir, sh = line.split(':')
print uname 
print homedir

record = ('ACME', 50, 123.45, (12, 18, 2012))
name, *_, (*_, year) = record
print name
print year

items = [1, 10, 7, 4, 5, 9]
head, *tail = items
print head #1
print tail #[10, 7, 4, 5, 9]

def sum(items):
    head, *tail = items
    return head + sum(tail) if tail else head
sum(items)

 1.3    保存最后N个元素

from _collections import deque

def search(lines, pattern, history=5):
    previous_lines = deque(maxlen = history)
    for line in lines:
        if pattern in line:
            yield line, previous_lines
        previous_lines.append(line)
# Example use on a file
if __name__ == '__main__':
    with open('somefile.txt') as f:
        for line, prevlines in search(f, 'python', 5):
            for pline in prevlines:
                print (pline) #print (pline, end='')
            print (line) #print (pline, end='')
            print ('-'*20)
            
q = deque(maxlen=3)
q.append(1)
q.append(2)
q.append(3)
print q
q.append(4)
print q

q = deque()
q.append(1)
q.append(2)
q.append(3)
print q
q.appendleft(4)
print q
q_pop = q.pop()
print q_pop
print q
q_popleft = q.popleft()
print q_popleft
print q

 1.4    找到最大或最小的N个元素

import heapq

nums = [1,30,6,2,36,33,46,3,23,43]
print (heapq.nlargest(3, nums))
print (heapq.nsmallest(3, nums))

portfolio = [
                 {'name':'IBM', 'shares':100, 'price':2.4},
                 {'name':'A', 'shares':1040, 'price':12.4},
                 {'name':'S', 'shares':40, 'price':23.4},
                 {'name':'D', 'shares':1, 'price':2.49},
                 {'name':'F', 'shares':9, 'price':24}
             ]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
print cheap
print expensive

nums = [1,8,2,23,7,-4,18,23,42,37,2]
heap = list(nums)
print heap
heapq.heapify(heap)
print heap
print heapq.heappop(heap)
print heapq.heappop(heap)
print heapq.heappop(heap)

 1.5    实现优先级队列

import heapq

class PriorityQueue:
    def __init__(self):
        self._queue = []
        self._index = 0
    def push(self, item, priority):
        heapq.heappush(self._queue, (-priority, self._index, item))
        self._index += 1
    def pop(self):
        return heapq.heappop(self._queue)[-1]
#Example
class Item:
    def __init__(self, name):
        self.name = name
    def __repr__(self):
        return 'Item({!r})'.format(self.name)
q = PriorityQueue()
q.push(Item('foo'), 1)
q.push(Item('spam'), 4)
q.push(Item('bar'), 5)
q.push(Item('grok'), 1)
print q.pop()
print q.pop()
print q.pop()

a = Item('foo')
b = Item('bar')
#a < b    error

a = (1, Item('foo'))
b = (5, Item('bar'))
print a < b

c = (1, Item('grok'))
#a < c  error

a = (1, 0, Item('foo'))
b = (5, 1, Item('bar'))
c = (1, 2, Item('grok'))
print a < b
print a < c

 1.6    在字典中将建映射到多个值上

d = {
        'a' : [1, 2, 3],
        'b' : [4, 5]
     }
e = {
        'a' : {1, 2, 3},
        'b' : {4, 5}
     }

from collections import defaultdict

d = defaultdict(list)
d['a'].append(1)
d['a'].append(2)
d['a'].append(3)
print d

d = defaultdict(set)
d['a'].add(1)
d['a'].add(2)
d['a'].add(3)
print d

d = {}
d.setdefault('a', []).append(1)
d.setdefault('a', []).append(2)
d.setdefault('b', []).append(3)
print d 

d = {}
for key, value in d:#pairs:
    if key not in d:
        d[key] = []
    d[key].append(value)

d = defaultdict(list)
for key, value in d:#pairs:
    d[key].append(value)

 1.7    让字典保持有序

from collections import OrderedDict

d = OrderedDict()
d['foo'] = 1
d['bar'] = 2
d['spam'] = 3
d['grol'] = 4
for key in d:
    print (key, d[key])
    
import json

json.dumps(d)

 1.8    与字典有关的计算问题

price = {
            'ACME':23.45,
            'IBM':25.45,
            'FB':13.45,
            'IO':4.45,
            'JAVA':45.45,
            'AV':38.38,
         }

min_price = min( zip( price.values(), price.keys() ) )
print min_price

max_price = max( zip( price.values(), price.keys() ) )
print max_price

price_sorted = sorted( zip( price.values(), price.keys() ) )
print price_sorted   

price_and_names = zip( price.values(), price.keys() )
print (min(price_and_names))
#print (max(price_and_names))  error  zip()创建了迭代器,内容只能被消费一次

print min(price)
print max(price)

print min(price.values())
print max(price.values())


print min(price, key = lambda k : price[k])
print max(price, key = lambda k : price[k])

min_value = price[ min(price, key = lambda k : price[k]) ]
print min_value

price = {
            'AAA': 23,
            'ZZZ': 23,
         }
print min( zip( price.values(), price.keys() ) )
print max( zip( price.values(), price.keys() ) )

 1.9    在两个字典中寻找相同点

a = {
        'x':1,
        'y':2,
        'z':3
     }
b = {
        'x':11,
        'y':2,
        'w':10
     }

print a.keys() & b.keys() #{'x','y'}
print a.keys() - b.keys() #{'z'}
print a.items() & b.items() #{('y', 2)}

c = {key: a[key] for key in a.keys() - {'z', 'w'} }
print c #{'x':1, 'y':2}

 1.10    从序列中移除重复项且保持元素间顺序不变

def dedupe(items):
    seen = set()
    for item in items:
        if item not in seen:
            yield item
            seen.add(item)
#example
a = [1,5,2,1,9,1,5,10]
print list(dedupe(a))

def dedupe2(items, key = None):
    seen = set()
    for item in items:
        val = item if key is None else key(item)
        if val not in seen:
            yield item
            seen.add(val) 
#example
a = [ 
        {'x':1, 'y':2}, 
        {'x':1, 'y':3}, 
        {'x':1, 'y':2}, 
        {'x':2, 'y':4}, 
     ]
print list( dedupe2(a, key=lambda d : (d['x'], d['y']) ) )
print list( dedupe2(a, key=lambda d : (d['x']) ) )

a = [1,5,2,1,9,1,5,10]
print set(a)   

 1.11    对切片命名

items = [0,1,2,3,4,5,6]
a = slice(2,4)
print items[2:4]
print items[a]
items[a] = [10,11]
print items

print a.start
print a.stop
print a.step

 1.12    找出序列中出现次数最多的元素

words = [
            'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
            'the', 'look'
         ]

from collections import Counter

word_counts = Counter(words)
top_three = word_counts.most_common(3)
print top_three

print word_counts['look']
print word_counts['the']

morewords = ['why', 'are', 'you', 'not', 'looking', 'in', 'my', 'eyes']
for word in morewords:
    word_counts[word] += 1
print word_counts['eyes']
print word_counts['why']

word_counts.update(morewords)
print word_counts['eyes']
print word_counts['why']

a = Counter(words)
b = Counter(morewords)
print a
print b
c = a + b
print c
d = a - b
print b

 1.13    通过公共键对字典列表排序

rows = [
            {'fname':'Brian', 'lname':'Jones', 'uid':1003},
            {'fname':'David', 'lname':'Beazley', 'uid':1002},
            {'fname':'John', 'lname':'Cleese', 'uid':1001},
            {'fname':'Big', 'lname':'Jones', 'uid':1004}
        ]

from operator import itemgetter

rows_by_fname = sorted(rows, key=itemgetter('fname'))
rows_by_uid = sorted(rows, key=itemgetter('uid'))
print rows_by_fname
print rows_by_uid
rows_by_lfname = sorted(rows, key=itemgetter('lname', 'fname'))
print rows_by_lfname

rows_by_fname = sorted(rows, key=lambda r: r['fname'])
rows_by_lfname = sorted(rows, key=lambda r: (r['fname'], r['lname']))
print rows_by_fname
print rows_by_lfname

print min(rows, key=itemgetter('uid'))
print max(rows, key=itemgetter('uid'))

 1.14    对不原生支持比较操作的对象排序

class User:
    def __init__(self, user_id):
        self.user_id = user_id
    def __repr__(self):
        return 'User({})'.format(self.user_id)

users = [User(23), User(3), User(99)]
print users
print sorted(users, key = lambda u: u.user_id)

from operator import attrgetter
print sorted(users, key=attrgetter('user_id'))

print min(users, key=attrgetter('user_id'))
print max(users, key=attrgetter('user_id'))

 1.15    根据字段将记录分组

rows = [
            {'address':'5412 N CLARK', 'data':'07/01/2012'},
            {'address':'5232 N CLARK', 'data':'07/04/2012'},
            {'address':'5542 E 58ARK', 'data':'07/02/2012'},
            {'address':'5152 N CLARK', 'data':'07/03/2012'},
            {'address':'7412 N CLARK', 'data':'07/02/2012'},
            {'address':'6789 w CLARK', 'data':'07/03/2012'},
            {'address':'9008 N CLARK', 'data':'07/01/2012'},
            {'address':'2227 W CLARK', 'data':'07/04/2012'}
        ]

from operator import itemgetter
from itertools import groupby

rows.sort(key=itemgetter('data'))
for data, items in groupby(rows, key=itemgetter('data')):
    print (data)
    for i in items:
        print (' ', i)
        
from collections import defaultdict
rows_by_date = defaultdict(list)
for row in rows:
    rows_by_date[row['data']].append(row)
for r in rows_by_date['07/04/2012']:
    print(r)

 1.16    筛选序列中的元素

mylist = [1,4,-5,10,-7,2,3,-1]
print [n for n in mylist if n > 0]#列表推导式
print [n for n in mylist if n < 0]

pos = (n for n in mylist if n > 0)#生成器表达式
print pos
for x in pos:
    print(x)

values = ['1', '2', '-3', '-', '4', 'N/A', '5']
def is_int(val):
    try:
        x = int(val)
        return True
    except ValueError:
        return False
ivals = list(filter(is_int, values))
print(ivals)

mylist = [1,4,-5,10,-7,2,3,-1]
import math
print [math.sqrt(n) for n in mylist if n > 0]

clip_neg = [n if n > 0 else 0 for n in mylist]
print clip_neg

clip_pos = [n if n < 0 else 0 for n in mylist]
print clip_pos

addresses = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
counts = [0, 3, 10, 4, 1, 7, 6, 1]
from itertools import compress
more5 = [n > 5 for n in counts]
print more5
print list(compress(addresses, more5))

 1.17    从字典中提取子集

prices = {'ACNE':45.23, 'AAPL':612.78, 'IBM':205.55, 'HPQ':37.20, 'FB':10.75}
p1 = { key:value for key, value in prices.items() if value > 200 }
print p1

tech_names = {'AAPL', 'IBM', 'HPQ'}
p2 = { key:value for key, value in prices.items() if key in tech_names }
print p2

p3 = dict( (key, value) for key, value in prices.items() if value > 200 ) #慢
print p3

tech_names = {'AAPL', 'IBM', 'HPQ'}
p4 = { key:prices[key] for key in prices.keys() if key in tech_names } #慢
print p4

 1.18    将名称映射到序列的元素中

from collections import namedtuple

Subscriber = namedtuple('Subscriber', ['addr', 'joined'])
sub = Subscriber('[email protected]', '2020-10-10')
print sub
print sub.joined
print sub.addr

print len(sub)
addr, joined = sub
print addr
print joined

def compute_cost(records):
    total = 0.0
    for rec in records:
        total += rec[1]*rec[2]
    return total

Stock = namedtuple('Stock', ['name', 'shares', 'price'])
def compute_cost2(records):
    total = 0.0
    for rec in records:
        s = Stock(*rec)
        total += s.shares * s.price
    return total

s = Stock('ACME', 100, 123.45)
print s
#s.shares = 75    #error
s = s._replace(shares=75)
print s

Stock = namedtuple('Stock', ['name', 'shares', 'price', 'date', 'time'])
stock_prototype = Stock('',0, 0.0, None, None)
def dict_to_stock(s):
    return stock_prototype._replace(**s)
a = {'name':'ACME', 'shares':100, 'price':123.45}
print dict_to_stock(a)
b = {'name':'ACME', 'shares':100, 'price':123.45, 'date':'12/12/2012'}
print dict_to_stock(b)

 1.19    同时对数据做转换和换算

nums = [1, 2, 3, 4, 5]
s = sum( x*x for x in nums )
print s

import os
files = os.listdir('dirname')
if any(name.endswith('.py') for name in files):
    print('There be Python!')
else:
    print('sorry, no Python!')
    
s = ('ACME', 50, 123.45)
print(','.join(str(x) for x in s))

portfolio = [
                {'name':'GOOG', 'shares':50},
                {'name':'YHOO', 'shares':75},
                {'name':'AOL', 'shares':20},
                {'name':'SCOX', 'shares':65}
             ]
min_shares = min(s['shares'] for s in portfolio)
print min_shares    

min_shares = min(portfolio, key=lambda s: s['shares'])
print min_shares

 1.20    将多个映射合并为单个映射

a = {'x':1, 'z':3}
b = {'y':2, 'z':4}

#from collections import ChainMap
from pip._vendor.distlib.compat import ChainMap

c = ChainMap(a, b)
print(c['x'])
print(c['y'])
print(c['z']) #from a    第一个映射中的值

print len(c)
print list(c.values())

c['z'] = 10
c['w'] = 40
del c['x']
print a
#del c['y']    #error    修改映射的操作总是会作用在列表的第一个映射结构上

values = ChainMap()
values['x'] = 1
values = values.new_child()#add a new map
values['x'] = 2
values = values.new_child()
values['x'] = 3
#print values
print values['x']
values = values.parents
print values['x']
values = values.parents
print values['x']

a = {'x':1, 'z':3}
b = {'y':2, 'z':4}
merged = dict(b)
merged.update(a)
print merged['x']
print merged['y']
print merged['z']
a['x'] = 13
print merged['x']   #不会反应到合并后的字典中

a = {'x':1, 'z':3}
b = {'y':2, 'z':4}
merged = ChainMap(a, b)
print merged['x']
a['x'] = 42
print merged['x']   #会反应到合并后的字典中

 

你可能感兴趣的:(数据结构,算法,python,pythoncookbokk)