Storm深入理解

Storm深入理解

Storm是一个免费开源、分布式、高容错的实时计算系统。

相关示例项目:Leek——简易版实时智能选股平台

一、Storm集群架构

Storm深入理解_第1张图片

  • Nimbus :Storm集群的Master节点,负责分发用户代码,指派给具体的Supervisor节点上的Worker节点,去运行Topology对应的组件(Spout/Bolt)的Task。

  • Supervisor :Storm集群的从节点,负责管理运行在Supervisor节点上的每一个Worker进程的启动和终止。通过Storm的配置文件中的supervisor.slots.ports配置项,可以指定在一个Supervisor上最大允许多少个Slot,每个Slot通过端口号来唯一标识,一个端口号对应一个Worker进程(如果该Worker进程被启动)。

  • ZooKeeper :用来协调Nimbus和Supervisor,如果Supervisor因故障出现问题而无法运行Topology,Nimbus会第一时间感知到,并重新分配Topology到其它可用的Supervisor上运行。

二、Storm组件抽象

一个Topology的Spout/Bolt对应的多个Task可能分布在多个Supervisor的多个Worker内部。而每个Worker内部又存在多个Executor,根据实际对Topology的配置在运行时进行计算并分配。

  • Topology :Storm对一个分布式计算应用程序的抽象,目的是通过一个实现Topology能够完整地完成一件事情(从业务角度来看)。一个Topology是由一组静态程序组件(Spout/Bolt)、组件关系Streaming Groups这两部分组成。
  • Spout :描述了数据是如何从外部系统(或者组件内部直接产生)进入到Storm集群,并由该Spout所属的Topology来处理,通常是从一个数据源读取数据,也可以做一些简单的处理(为了不影响数据连续地、实时地、快速地进入到系统,通常不建议把复杂处理逻辑放在这里去做)。
  • Bolt :描述了与业务相关的处理逻辑。

上面都是一些表达静态事物(组件)的概念,我们编写完成一个Topology之后,上面的组件都以静态的方式存在。下面,我们看一下提交Topology运行以后,会产生那些动态的组件(概念):

  • Task :Spout/Bolt在运行时所表现出来的实体,都称为Task,一个Spout/Bolt在运行时可能对应一个或多个Spout Task/Bolt Task,与实际在编写Topology时进行配置有关。
  • Worker :运行时Task所在的一级容器,Executor运行于Worker中,一个Worker对应于- - Supervisor上创建的一个JVM实例
  • Executor :运行时Task所在的直接容器,在Executor中执行Task的处理逻辑;一个或多个Executor实例可以运行在同一个Worker进程中,一个或多个Task可以运行于同一个Executor中;在Worker进程并行的基础上,Executor可以并行,进而Task也能够基于Executor实现并行计算

三、Storm的流分组策略

Storm中最重要的抽象,应该就是Stream grouping了,它能够控制Spot/Bolt对应的Task以什么样的方式来分发Tuple,将Tuple发射到目的Spot/Bolt对应的Task,如下图所示:

  • Shuffle grouping: This randomly distributes tuples across the target bolt's tasks such that each bolt receives an equal number of tuples.(随机分配tuple到不同的task中,保证均匀分配)
  • Fields grouping: This routes tuples to bolt tasks based on the values of the fields specified in the grouping. For example, if a stream is grouped on the "word" field, tuples with the same value for the "word" field will always be routed to the same bolt task.(根据每个tuble的field值来分配到不同的task中,保证相同的值到相同的task中)
  • All grouping: This replicates the tuple stream across all bolt tasks such thateach task will receive a copy of the tuple.(每个tuple被复制发送到所有相关的task中)
  • Global grouping: This routes all tuples in a stream to a single task, choosingthe task with the lowest task ID value. Note that setting a parallelism hint or number of tasks on a bolt when using the global grouping is meaningless since all tuples will be routed to the same bolt task. The global grouping should be used with caution since it will route all tuples to a single JVM instance, potentially creating a bottleneck or overwhelming a specific JVM/machine in a cluster.(每个tuple会被发送到一个ID最小的task里面,慎用!容易引起性能问题)
  • None grouping: The none grouping is functionally equivalent to the shuffle grouping. It has been reserved for future use.(不分组,效果和shuffle grouping差不多)
  • Direct grouping: With a direct grouping, the source stream decides whichcomponent will receive a given tuple by calling the emitDirect() method.It and can only be used on streams that have been declared direct streams.(由Tupe的生产者来决定发送给下游的哪一个Bolt的Task ,这个要在实际开发编写Bolt代码的逻辑中进行精确控制)
  • Local or shuffle grouping:The local or shuffle grouping is similar to the shuffle grouping but will shuffle tuples among bolt tasks running in the same worker process, if any. Otherwise, it will fall back to the shuffle grouping behavior. Depending on the parallelism of a topology, the local or shuffle grouping can increase topology performance by limiting network transfer.(如果目标Bolt有1个或多个Task都在同一个Worker进程对应的JVM实例中,则Tuple只发送给这些Task)
  • Own Stream Grouping : you can define your own stream grouping by implementing the CustomStreamGrouping interface(通过实现CustomStreamGrouping接口自定义分组)

    Storm深入理解_第2张图片

四、Topology并行度计算

官网的栗子:
Storm深入理解_第3张图片

conf.setNumWorkers(2); // 该Topology运行在Supervisor节点的2个Worker进程中
topologyBuilder.setSpout("blue-spout", new BlueSpout(), 2); // 设置并行度为2,则Task个数为2*1
topologyBuilder.setBolt("green-bolt", new GreenBolt(), 2)
           .setNumTasks(4)
           .shuffleGrouping("blue-spout"); // 设置并行度为2,设置Task个数为4 ,则Task个数为4
topologyBuilder.setBolt("yellow-bolt", new YellowBolt(), 6)
           .shuffleGrouping("green-bolt"); // 设置并行度为6,则Task个数为6*1

那么,下面我们看Storm是如何计算一个Topology运行时的并行度,并分配到2个Worker中的:

  • 计算Task总数:2乘1+4+6乘1=12(总计创建12个Task实例)
  • 计算运行时Topology并行度:10/2=5(每个Worker对应5个Executor)
  • 将12个Task分配到2个Worker中的5*2个Executor中:应该是每个Worker上5个Executor,将6个Task分配到5个Executor中
  • 每个Worker中分配6个Task,应该是分配3个Yellow Task、2个Green Task、1个Blue Task
  • Storm内部优化:会把同类型的Task尽量放到同一个Executor中运行
  • 分配过程:从Task个数最少的开始,1个Blue Task只能放到一个Executor,总计1个Executor被占用;2个Green Task可以放到同一个Executor中,总计2个Executor被占用;最后看剩下的3个Yellow Task能否分配到5-2=3个Executor中,显然每个Yellow Task对应一个Executor

Storm深入理解_第4张图片

五、Bolt生命周期

Bolt是这样一种组件,它把元组作为输入,然后产生新的元组作为输出。实现一个bolt时,通常需要实现IRichBolt接口。Bolts对象由客户端机器创建,序列化为拓扑,并提交给集群中的主机。然后集群启动工人进程反序列化bolt,调用prepare,最后开始处理元组。

//为bolt声明输出模式
declareOutputFields(OutputFieldsDeclarer declarer)
//仅在bolt开始处理元组之前调用
prepare(java.util.Map stormConf, TopologyContext context, OutputCollector collector)
//处理输入的单个元组
execute(Tuple input)
//在bolt即将关闭时调用
cleanup()

六、在Storm上的topology的生命周期如下:

  1. 上传代码并做校验(/data/nimbus/inbox);
  2. 建立本地目录(/data/nimbus/stormdist/topology-id/);
  3. 建立zookeeper上的心跳目录;
  4. 计算topology的工作量(parallelism hint),分配task-id并写入zookeeper;
  5. 把task分配给supervisor执行;
  6. 在supervisor中定时检查是否有新的task,下载新代码、删除老代码,剩下的工作交个小弟worker;
  7. 在worker中把task拿到,看里面有哪些spout/Bolt,然后计算需要给哪些task发消息并建立连接;
  8. 在nimbus将topology终止的时候会将zookeeper上的相关信息删除;

七、消息的可靠处理机制

Storm内部通过一种巧妙的异或算法判读每个tuple是否被正确完整的处理。

  1. Spout的一个Task创建一个Tuple时,即在Spout的nextTuple()方法中实现从特定数据源读取数据的处理逻辑中,会与Acker进行通信,向Acker发送消息,Acker保存该Tuple对应信息:{:spout-task task-id :val ack-val)}。
  2. Bolt在emit一个新的子Tuple时,会保存子Tuple与父Tuple的关系。
  3. 在Bolt中进行ack时,会计算出父Tuple与由该父Tuple新生成的所有子Tuple的一个异或值,将该值发送给Acker(计算异或值:tuple-id ^ (child-tuple-id1 ^ child-tuple-id2 … ^ child-tuple-idN))。可见,这里Bolt并没有把所有生成的子Tuple发送给Acker,这要比发送一个异或值大得多了,只发送一个异或值大大降低了Bolt与Acker之间网络通信的开销。
  4. Acker收到Bolt发送的异或值,与当前保存的task-id对应的初始ack-val做异或,tuple-id与ack-val相同,异或结果为0,但是子Tuple的child-tuple-id等并不互相相同,只有等所有的子Tuple的child-tuple-id都执行ack回来,最后ack-val就为0,表示整个Tuple树处理成功。无论成功与失败,最后都要从Acker维护的队列中移除。
  5. 最后,Acker会向产生该原始父Tuple的Spout对应的Task发送通知,成功或者失败,回调Spout的ack或fail方法。如果我们在实现Spout时,重写了ack和fail方法,处理回调就会执行这里的逻辑。

当然这种异或算法存在1/2^64概率的误差,可以忽略不计。
在开发中,对于那些不允许丢失的消息我们在发送消息时要对tuple指定messageID并进行锚定,告诉tuple tree这里增加了一个新的节点,保证消息的可靠性。

collector.emit(tuple,messageId)//可靠消息
collector.emit(tuple)//不可靠的消息

collector.emit(tuple, new Values(word));//锚定发送,可靠的消息
collector.emit(new Values(word)));//非锚定发送,不可靠的消息

注意:继承BaseBasicBolt实现的API本是就是可靠性的,不需要自己进行锚定发送和调用ack以及fail方法。
Storm深入理解_第5张图片

八、Storm的容错机制

1、任务级容错

  • Bolt任务crash引起的消息未被应答。此时,acker中所有与此Bolt任务关联的消息都会因为超时而失败,对应的Spout的fail方法将被调用。
  • acker任务失败。如果acker任务本身失败了,它在失败之前持有的所有消息都将超时而失败。Spout的fail方法将被调用。
  • Spout任务失败。在这种情况下,与Spout任务对接的外部设备(如MQ)负责消息的完整性。例如,当客户端异常时,kestrel队列会将处于pending状态的所有消息重新放回队列中。

2、任务槽(slot)故障

  • Worker失败。每个Worker中包含数个Bolt(或Spout)任务。Supervisor负责监控这些任务,当worker失败后会尝试在本机重启它,如果它在启动时连续失败了一定的次数,无法发送心跳信息到Nimbus,Nimbus将在另一台主机上重新分配worker。
  • Supervisor失败。Supervisor是无状态(所有的状态都保存在Zookeeper或者磁盘上)和快速失败(每当遇到任何意外的情况,进程自动毁灭)的,因此Supervisor的失败不会影响当前正在运行的任务,只要及时将他们重新启动即可。
  • Nimbus失败。Nimbus也是无状态和快速失败的,因此Nimbus的失败不会影响当前正在运行的任务,但是当Nimbus失败时,无法提交新的任务,只要及时将它重新启动即可。

3、集群节点(机器):

  • Storm集群中的节点故障。此时Nimbus会将此机器上所有正在运行的任务转移到其他可用的机器上运行。
  • Zookeeper集群中的节点故障。Zookeeper保证少于半数的机器宕机系统仍可正常运行,及时修复故障机器即可。

九、Storm's DRPC Server

DRPC Server整体工作过程:
(1)接受一个RPC请求
(2)发送请求到Storm Topology
(3)执行相应操作
(4)把结果发回给客户端
Storm深入理解_第6张图片

参考资料:

  • http://storm.apache.org/
  • http://storm.apache.org/documentation.html
  • http://storm.apache.org/documentation/Guaranteeing-message-processing.html
  • http://storm.apache.org/documentation/Understanding-the-parallelism-of-a-Storm-topology.html
  • 《Storm Blueprints : Patterns for Distributed Real-time Computation》
  • 《Getting Started With Storm》
  • 《Learning Storm》
  • 《Storm Real-Time Event Processing》

你可能感兴趣的:(storm,大数据)