Linux内存管理之slab机制(创建cache)

 Linux内核中创建cache节点由函数kmem_cache_create()实现。

该函数的执行流程:

1,从全局cache_cache中获得cache结构,因为全局cache_cache初始化对象的大小就是kmem_cache结构的大小,所以返回的指针正好可以转换为cache结构;调用 kmem_cache_zalloc(&cache_cache, gfp);

2,获得slab中碎片大小,由函数calculate_slab_order()实现;

3,计算并初始化cache的各种属性,如果是外置式,需要用kmem_find_general_cachep(slab_size, 0u)指定cachep->slabp_cache,用于存放slab对象和kmem_bufctl_t[]数组;

4,设置每个CPU上得本地cachesetup_cpu_cache();

5cache创建完毕,将其加入到全局slab cache链表中;

一、主实现

/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * @name must be valid until the cache is destroyed. This implies that
 * the module calling this has to destroy the cache before getting unloaded.
 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
 * therefore applications must manage it themselves.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
 /*创建slab系统顶层的cache节点。创建完成后,cache
 里并没有任何slab以及对象,只有当分配对象
 ,并且cache中没有空闲对象时,才会创建新的slab。*/
struct kmem_cache *
kmem_cache_create (const char *name, size_t size, size_t align,
	unsigned long flags, void (*ctor)(void *))
{
	size_t left_over, slab_size, ralign;
	struct kmem_cache *cachep = NULL, *pc;
	gfp_t gfp;

	/*
	 * Sanity checks... these are all serious usage bugs.
	 *//* 安全性检查 */
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
	    size > KMALLOC_MAX_SIZE) {
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
				name);
		BUG();
	}

	/*
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_mask as well.  Please see cpuup_callback
	 */
	 /* slab分配器是否已经初始化好,如果是内核启动阶段
	 ,则只有一个cpu执行slab分配器的初始化动作,无需加锁,否则需要加锁 */
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
 	/* 遍历cache链,做些校验工作 */
	list_for_each_entry(pc, &cache_chain, next) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		/* 检查cache链表中的cache是否都有名字 */
		res = probe_kernel_address(pc->name, tmp);
		if (res) {/*没有名字,报错*/
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
			       pc->buffer_size);
			continue;
		}
 		 /* 检查cache链表中是否已经存在相同名字的cache */
		if (!strcmp(pc->name, name)) {
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
	 */
	BUG_ON(flags & ~CREATE_MASK);

	/*
	 * Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
	}

	/* calculate the final buffer alignment: */

	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
		 */
		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}

	/*
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}

	/* 2) arch mandated alignment */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
	/* 3) caller mandated alignment */
	if (ralign < align) {
		ralign = align;
	}
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
	/*
	 * 4) Store it.
	 */
	align = ralign;
	/* slab分配器是否已经可用 */
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		/* slab初始化好之前,不允许阻塞,且只能在低端内存区分配 */
		gfp = GFP_NOWAIT;

	/* Get cache's description obj. */
	/* 获得struct kmem_cache对象 ,为什么能从cache中获得的对象是
	kmem_cache结构呢,因为这里的全局变量cache_cache的对象大小
	就是kmem_cache结构大小*/
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
	if (!cachep)
		goto oops;

#if DEBUG
	cachep->obj_size = size;

	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires one word storage behind the end of
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
		 */
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
		size = PAGE_SIZE;
	}
#endif
#endif

	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	 /* 确定slab管理对象的存储方式:内置还是外置
	 。通常,当对象大于等于512时,使用外置方式
	 。初始化阶段采用内置式。
	 slab_early_init 参见kmem_cache_init函数 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);
	/* 获得slab中碎片的大小 */
	left_over = calculate_slab_order(cachep, size, align, flags);
	/* cachep->num为该cache中每个slab的对象数,为0,表示为该对象创建cache失败 */
	if (!cachep->num) {
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
		goto oops;
	}
	/* 计算slab管理对象的大小,包括struct slab对象和kmem_bufctl_t数组 */
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */

	/* 如果这是一个外置式slab,并且碎片大小大于slab管理对象的大小
	,则可将slab管理对象移到slab中,改造成一个内置式slab */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		/* 除去off-slab标志位 */
		flags &= ~CFLGS_OFF_SLAB;
		/* 更新碎片大小 */
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
		/* align是针对slab对象的,如果slab管理对象是外置存储
		,自然不会像内置那样影响到后面slab对象的存储位置
		,也就不需要对齐了 */
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
	}
	/* cache的着色块的单位大小 */
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	/* 着色块大小必须是对象要求对齐方式的倍数 */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
	 /* 计算碎片区需要多少个着色快 */
	cachep->colour = left_over / cachep->colour_off;
	 /* slab管理对象的大小 */
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
		cachep->gfpflags |= GFP_DMA;
	/* slab对象的大小 */
	cachep->buffer_size = size;
	 /* 计算对象在slab中索引时用,参见obj_to_index函数 */
	cachep->reciprocal_buffer_size = reciprocal_value(size);

	if (flags & CFLGS_OFF_SLAB) {
		/* 分配一个slab管理区域对象,保存在slabp_cache中,
		这个函数传入的大小为slab_size,也就是分配slab_size大小的cache
		,在slab创建的时候如果是外置式,那么需要从分配的这里面
		分配出slab对象,剩下的空间放kmem_bufctl_t[]数组,
		如果是内置式的slab,此指针为空 */
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
	}
	cachep->ctor = ctor;
	cachep->name = name;
	/* 设置每个cpu上的local cache */
	if (setup_cpu_cache(cachep, gfp)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}

	/* cache setup completed, link it into the list */
	/* cache创建完毕,将其加入到全局slab cache链表中 */
	list_add(&cachep->next, &cache_chain);
oops:
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
		      name);
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
	return cachep;
}

其中,cache_cache

/* internal cache of cache description objs */
static struct kmem_cache cache_cache = {
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
	.buffer_size = sizeof(struct kmem_cache),/*大小为cache结构,难怪名称为cache_cache*/
	.name = "kmem_cache",
};

二、计算slab碎片大小

/**
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
 /*计算slab由几个页面组成,同时计算每个slab中有多少对象*/
static size_t calculate_slab_order(struct kmem_cache *cachep,
			size_t size, size_t align, unsigned long flags)
{
	unsigned long offslab_limit;
	size_t left_over = 0;
	int gfporder;

	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
		unsigned int num;
		size_t remainder;
		/* 计算slab中对象数 */
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
		/* 对象数为0,表示此order下,一个对象都放不下,检查下一order */
		if (!num)
			continue;

		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			 /* 创建一个外置式slab时,要相应分配该slab的管理对象
			 ,包含struct slab对象和kmem_bufctl_t数组,分配管理对象的流程就是分配普通对象的流程
			 ,再来看一下分配对象的流程:
			kmem_cache_alloc->__cache_alloc-> __do_cache_alloc-> ____cache_alloc-> cache_alloc_refill-> cache_grow-> alloc_slabmgmt-> kmem_cache_alloc_node-> kmem_cache_alloc
			可以看出这里可能存在一个循环,循环的关键在于alloc_slabmgmt函数
			,当slab管理对象是off-slab方式时,就形成了循环
			。那么什么时候slab管理对象会采用外置式slab呢?显然当其管理的slab中对象很多
			,从而kmem_bufctl_t数组很大,致使整个管理对象也很大,此时才会形成循环
			。故需要对kmem_bufctl_t的数目做限制,下面的算法是很粗略的,既然对象大小为size时
			,是外置式slab,那么我们假设管理对象的大小也是size,计算出kmem_bufctl_t数组的大小
			,即此大小的kmem_bufctl_t数组一定会造成管理对象是外置式slab。之所以说粗略
			,是指数组大小小于这个限制时,也不能确保管理对象一定是内置式slab。但这也不会引发错误
			,因为还有一个slab_break_gfp_order阀门来控制每个slab所占页面数,通常其值为1,即每个slab最多两个页面
			,外置式slab存放的都是大于512的大对象,所以
			slab中不会有太多的大对象,kmem_bufctl_t数组也不会很大,粗略判断一下就足够了。
			*/
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);
			/* 对象数目大于限制,跳出循环,不再尝试更大的order
			,避免slab中对象数目过多
			,此时计算的对象数也是有效的,循环一次没什么 */
 			if (num > offslab_limit)
				break;
		}

		/* Found something acceptable - save it away */
		/* 每个slab中的对象数 */
		cachep->num = num;
		 /* slab的order,即由几个页面组成 */
		cachep->gfporder = gfporder;
		 /* slab中剩余空间(碎片)的大小 */
		left_over = remainder;

		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		 /* SLAB_RECLAIM_ACCOUNT表示此slab所占页面为可回收的
		 ,当内核检测是否有足够的页面满足用户态的需求时
		 ,此类页面将被计算在内,通过调用
		 kmem_freepages()函数可以释放分配给slab的页框。由于是可回收的
		 ,所以不需要做后面的碎片检测了 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
		 /* slab_break_gfp_order为slab所占页面的阀门,超过这个阀门时
		 ,无论碎片大小,都不再检测更高的order了 */
		if (gfporder >= slab_break_gfp_order)
			break;

		/*
		 * Acceptable internal fragmentation?
		 */
		 /* slab所占页面的大小是碎片大小的8倍以上
		 ,页面利用率较高,可以接受这样的order */
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
			break;
	}
	/* 返回碎片大小 */
	return left_over;
}

三、查找指定大小cache

/*在general cache中分配一个struct kmem_cache对象。直接调用__find_general_cachep。*/
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
{
	return __find_general_cachep(size, gfpflags);
}
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
#endif
	if (!size)
		return ZERO_SIZE_PTR;
	/* 找到合适的malloc size */
	while (size > csizep->cs_size)
		csizep++;

	/*
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
#ifdef CONFIG_ZONE_DMA
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
#endif
  	/* 返回该大小级别的cache */
	return csizep->cs_cachep;
}

四、设置CPU本地cache

/*配置local cache和slab三链。*/
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
{
	/* general cache初始化完毕,配置每个cpu的local cache */
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep, gfp);
	/* 此时处于系统初始化阶段,g_cpucache_up记录general cache初始化的进度
	,比如PARTIAL_AC表示struct array_cache所在的cache已经创建,
	PARTIAL_L3表示struct kmem_list3所在的cache已经创建
	,注意创建这两个cache的先后顺序
	。在初始化阶段只需配置主cpu的local cache和slab三链 */
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		 /* 初始化阶段创建struct array_cache所在cache时进入这个流程
		 ,此时struct array_cache所在的general cache还未创建
		 ,只能使用静态分配的全局变量initarray_generic表示的local cache */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		 /* 创建struct kmem_list3所在的cache是在struct array_cache所在cache之后
		 ,所以此时struct kmem_list3所在的
		 cache也一定没有创建,也需要使用全局变量 */
		set_up_list3s(cachep, SIZE_AC);
		/* 执行到这struct array_cache所在的cache创建完毕
		,如果struct kmem_list3和struct array_cache位于同一个general cache中
		,不会再重复创建了
		,g_cpucache_up表示的进度更进一步 */
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		/* g_cpucache_up至少为PARTIAL_AC时进入这个流程,struct array_cache所在的
		general cache已经建立起来,可以通过kmalloc分配了 */
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), gfp);

		if (g_cpucache_up == PARTIAL_AC) {
			/* struct kmem_list3所在cache仍未创建完毕,还需使用全局的slab三链 */
			set_up_list3s(cachep, SIZE_L3);
			/* 后面将会分析kmem_cache_init函数,只有创建struct kmem_list3所在
			cache时才会进入此流程,上面的代码执行完,struct kmem_list3所在
			cache也就创建完毕可以使用了,更新g_cpucache_up */
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =/* 通过kmalloc分配struct kmem_list3对象 */
				    kmalloc_node(sizeof(struct kmem_list3),
						gfp, node);
				BUG_ON(!cachep->nodelists[node]);
				/* 初始化slab三链 */
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	/* 设置回收时间 */
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
	return 0;
}

你可能感兴趣的:(linux,cache,struct,list,object,alignment)