该函数的执行流程:
1,从全局cache_cache中获得cache结构,因为全局cache_cache初始化对象的大小就是kmem_cache结构的大小,所以返回的指针正好可以转换为cache结构;调用 kmem_cache_zalloc(&cache_cache, gfp);
2,获得slab中碎片大小,由函数calculate_slab_order()实现;
3,计算并初始化cache的各种属性,如果是外置式,需要用kmem_find_general_cachep(slab_size, 0u)指定cachep->slabp_cache,用于存放slab对象和kmem_bufctl_t[]数组;
4,设置每个CPU上得本地cache,setup_cpu_cache();
5,cache创建完毕,将其加入到全局slab cache链表中;
一、主实现
/** * kmem_cache_create - Create a cache. * @name: A string which is used in /proc/slabinfo to identify this cache. * @size: The size of objects to be created in this cache. * @align: The required alignment for the objects. * @flags: SLAB flags * @ctor: A constructor for the objects. * * Returns a ptr to the cache on success, NULL on failure. * Cannot be called within a int, but can be interrupted. * The @ctor is run when new pages are allocated by the cache. * * @name must be valid until the cache is destroyed. This implies that * the module calling this has to destroy the cache before getting unloaded. * Note that kmem_cache_name() is not guaranteed to return the same pointer, * therefore applications must manage it themselves. * * The flags are * * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) * to catch references to uninitialised memory. * * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check * for buffer overruns. * * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware * cacheline. This can be beneficial if you're counting cycles as closely * as davem. */ /*创建slab系统顶层的cache节点。创建完成后,cache 里并没有任何slab以及对象,只有当分配对象 ,并且cache中没有空闲对象时,才会创建新的slab。*/ struct kmem_cache * kmem_cache_create (const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void *)) { size_t left_over, slab_size, ralign; struct kmem_cache *cachep = NULL, *pc; gfp_t gfp; /* * Sanity checks... these are all serious usage bugs. *//* 安全性检查 */ if (!name || in_interrupt() || (size < BYTES_PER_WORD) || size > KMALLOC_MAX_SIZE) { printk(KERN_ERR "%s: Early error in slab %s\n", __func__, name); BUG(); } /* * We use cache_chain_mutex to ensure a consistent view of * cpu_online_mask as well. Please see cpuup_callback */ /* slab分配器是否已经初始化好,如果是内核启动阶段 ,则只有一个cpu执行slab分配器的初始化动作,无需加锁,否则需要加锁 */ if (slab_is_available()) { get_online_cpus(); mutex_lock(&cache_chain_mutex); } /* 遍历cache链,做些校验工作 */ list_for_each_entry(pc, &cache_chain, next) { char tmp; int res; /* * This happens when the module gets unloaded and doesn't * destroy its slab cache and no-one else reuses the vmalloc * area of the module. Print a warning. */ /* 检查cache链表中的cache是否都有名字 */ res = probe_kernel_address(pc->name, tmp); if (res) {/*没有名字,报错*/ printk(KERN_ERR "SLAB: cache with size %d has lost its name\n", pc->buffer_size); continue; } /* 检查cache链表中是否已经存在相同名字的cache */ if (!strcmp(pc->name, name)) { printk(KERN_ERR "kmem_cache_create: duplicate cache %s\n", name); dump_stack(); goto oops; } } #if DEBUG WARN_ON(strchr(name, ' ')); /* It confuses parsers */ #if FORCED_DEBUG /* * Enable redzoning and last user accounting, except for caches with * large objects, if the increased size would increase the object size * above the next power of two: caches with object sizes just above a * power of two have a significant amount of internal fragmentation. */ if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2 * sizeof(unsigned long long))) flags |= SLAB_RED_ZONE | SLAB_STORE_USER; if (!(flags & SLAB_DESTROY_BY_RCU)) flags |= SLAB_POISON; #endif if (flags & SLAB_DESTROY_BY_RCU) BUG_ON(flags & SLAB_POISON); #endif /* * Always checks flags, a caller might be expecting debug support which * isn't available. */ BUG_ON(flags & ~CREATE_MASK); /* * Check that size is in terms of words. This is needed to avoid * unaligned accesses for some archs when redzoning is used, and makes * sure any on-slab bufctl's are also correctly aligned. */ if (size & (BYTES_PER_WORD - 1)) { size += (BYTES_PER_WORD - 1); size &= ~(BYTES_PER_WORD - 1); } /* calculate the final buffer alignment: */ /* 1) arch recommendation: can be overridden for debug */ if (flags & SLAB_HWCACHE_ALIGN) { /* * Default alignment: as specified by the arch code. Except if * an object is really small, then squeeze multiple objects into * one cacheline. */ ralign = cache_line_size(); while (size <= ralign / 2) ralign /= 2; } else { ralign = BYTES_PER_WORD; } /* * Redzoning and user store require word alignment or possibly larger. * Note this will be overridden by architecture or caller mandated * alignment if either is greater than BYTES_PER_WORD. */ if (flags & SLAB_STORE_USER) ralign = BYTES_PER_WORD; if (flags & SLAB_RED_ZONE) { ralign = REDZONE_ALIGN; /* If redzoning, ensure that the second redzone is suitably * aligned, by adjusting the object size accordingly. */ size += REDZONE_ALIGN - 1; size &= ~(REDZONE_ALIGN - 1); } /* 2) arch mandated alignment */ if (ralign < ARCH_SLAB_MINALIGN) { ralign = ARCH_SLAB_MINALIGN; } /* 3) caller mandated alignment */ if (ralign < align) { ralign = align; } /* disable debug if necessary */ if (ralign > __alignof__(unsigned long long)) flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); /* * 4) Store it. */ align = ralign; /* slab分配器是否已经可用 */ if (slab_is_available()) gfp = GFP_KERNEL; else /* slab初始化好之前,不允许阻塞,且只能在低端内存区分配 */ gfp = GFP_NOWAIT; /* Get cache's description obj. */ /* 获得struct kmem_cache对象 ,为什么能从cache中获得的对象是 kmem_cache结构呢,因为这里的全局变量cache_cache的对象大小 就是kmem_cache结构大小*/ cachep = kmem_cache_zalloc(&cache_cache, gfp); if (!cachep) goto oops; #if DEBUG cachep->obj_size = size; /* * Both debugging options require word-alignment which is calculated * into align above. */ if (flags & SLAB_RED_ZONE) { /* add space for red zone words */ cachep->obj_offset += sizeof(unsigned long long); size += 2 * sizeof(unsigned long long); } if (flags & SLAB_STORE_USER) { /* user store requires one word storage behind the end of * the real object. But if the second red zone needs to be * aligned to 64 bits, we must allow that much space. */ if (flags & SLAB_RED_ZONE) size += REDZONE_ALIGN; else size += BYTES_PER_WORD; } #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) if (size >= malloc_sizes[INDEX_L3 + 1].cs_size && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { cachep->obj_offset += PAGE_SIZE - size; size = PAGE_SIZE; } #endif #endif /* * Determine if the slab management is 'on' or 'off' slab. * (bootstrapping cannot cope with offslab caches so don't do * it too early on.) */ /* 确定slab管理对象的存储方式:内置还是外置 。通常,当对象大于等于512时,使用外置方式 。初始化阶段采用内置式。 slab_early_init 参见kmem_cache_init函数 */ if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init) /* * Size is large, assume best to place the slab management obj * off-slab (should allow better packing of objs). */ flags |= CFLGS_OFF_SLAB; size = ALIGN(size, align); /* 获得slab中碎片的大小 */ left_over = calculate_slab_order(cachep, size, align, flags); /* cachep->num为该cache中每个slab的对象数,为0,表示为该对象创建cache失败 */ if (!cachep->num) { printk(KERN_ERR "kmem_cache_create: couldn't create cache %s.\n", name); kmem_cache_free(&cache_cache, cachep); cachep = NULL; goto oops; } /* 计算slab管理对象的大小,包括struct slab对象和kmem_bufctl_t数组 */ slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab), align); /* * If the slab has been placed off-slab, and we have enough space then * move it on-slab. This is at the expense of any extra colouring. */ /* 如果这是一个外置式slab,并且碎片大小大于slab管理对象的大小 ,则可将slab管理对象移到slab中,改造成一个内置式slab */ if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { /* 除去off-slab标志位 */ flags &= ~CFLGS_OFF_SLAB; /* 更新碎片大小 */ left_over -= slab_size; } if (flags & CFLGS_OFF_SLAB) { /* really off slab. No need for manual alignment */ /* align是针对slab对象的,如果slab管理对象是外置存储 ,自然不会像内置那样影响到后面slab对象的存储位置 ,也就不需要对齐了 */ slab_size = cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); #ifdef CONFIG_PAGE_POISONING /* If we're going to use the generic kernel_map_pages() * poisoning, then it's going to smash the contents of * the redzone and userword anyhow, so switch them off. */ if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); #endif } /* cache的着色块的单位大小 */ cachep->colour_off = cache_line_size(); /* Offset must be a multiple of the alignment. */ /* 着色块大小必须是对象要求对齐方式的倍数 */ if (cachep->colour_off < align) cachep->colour_off = align; /* 计算碎片区需要多少个着色快 */ cachep->colour = left_over / cachep->colour_off; /* slab管理对象的大小 */ cachep->slab_size = slab_size; cachep->flags = flags; cachep->gfpflags = 0; if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) cachep->gfpflags |= GFP_DMA; /* slab对象的大小 */ cachep->buffer_size = size; /* 计算对象在slab中索引时用,参见obj_to_index函数 */ cachep->reciprocal_buffer_size = reciprocal_value(size); if (flags & CFLGS_OFF_SLAB) { /* 分配一个slab管理区域对象,保存在slabp_cache中, 这个函数传入的大小为slab_size,也就是分配slab_size大小的cache ,在slab创建的时候如果是外置式,那么需要从分配的这里面 分配出slab对象,剩下的空间放kmem_bufctl_t[]数组, 如果是内置式的slab,此指针为空 */ cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); /* * This is a possibility for one of the malloc_sizes caches. * But since we go off slab only for object size greater than * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, * this should not happen at all. * But leave a BUG_ON for some lucky dude. */ BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); } cachep->ctor = ctor; cachep->name = name; /* 设置每个cpu上的local cache */ if (setup_cpu_cache(cachep, gfp)) { __kmem_cache_destroy(cachep); cachep = NULL; goto oops; } /* cache setup completed, link it into the list */ /* cache创建完毕,将其加入到全局slab cache链表中 */ list_add(&cachep->next, &cache_chain); oops: if (!cachep && (flags & SLAB_PANIC)) panic("kmem_cache_create(): failed to create slab `%s'\n", name); if (slab_is_available()) { mutex_unlock(&cache_chain_mutex); put_online_cpus(); } return cachep; }
其中,cache_cache
/* internal cache of cache description objs */ static struct kmem_cache cache_cache = { .batchcount = 1, .limit = BOOT_CPUCACHE_ENTRIES, .shared = 1, .buffer_size = sizeof(struct kmem_cache),/*大小为cache结构,难怪名称为cache_cache*/ .name = "kmem_cache", };
二、计算slab碎片大小
/** * calculate_slab_order - calculate size (page order) of slabs * @cachep: pointer to the cache that is being created * @size: size of objects to be created in this cache. * @align: required alignment for the objects. * @flags: slab allocation flags * * Also calculates the number of objects per slab. * * This could be made much more intelligent. For now, try to avoid using * high order pages for slabs. When the gfp() functions are more friendly * towards high-order requests, this should be changed. */ /*计算slab由几个页面组成,同时计算每个slab中有多少对象*/ static size_t calculate_slab_order(struct kmem_cache *cachep, size_t size, size_t align, unsigned long flags) { unsigned long offslab_limit; size_t left_over = 0; int gfporder; for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { unsigned int num; size_t remainder; /* 计算slab中对象数 */ cache_estimate(gfporder, size, align, flags, &remainder, &num); /* 对象数为0,表示此order下,一个对象都放不下,检查下一order */ if (!num) continue; if (flags & CFLGS_OFF_SLAB) { /* * Max number of objs-per-slab for caches which * use off-slab slabs. Needed to avoid a possible * looping condition in cache_grow(). */ /* 创建一个外置式slab时,要相应分配该slab的管理对象 ,包含struct slab对象和kmem_bufctl_t数组,分配管理对象的流程就是分配普通对象的流程 ,再来看一下分配对象的流程: kmem_cache_alloc->__cache_alloc-> __do_cache_alloc-> ____cache_alloc-> cache_alloc_refill-> cache_grow-> alloc_slabmgmt-> kmem_cache_alloc_node-> kmem_cache_alloc 可以看出这里可能存在一个循环,循环的关键在于alloc_slabmgmt函数 ,当slab管理对象是off-slab方式时,就形成了循环 。那么什么时候slab管理对象会采用外置式slab呢?显然当其管理的slab中对象很多 ,从而kmem_bufctl_t数组很大,致使整个管理对象也很大,此时才会形成循环 。故需要对kmem_bufctl_t的数目做限制,下面的算法是很粗略的,既然对象大小为size时 ,是外置式slab,那么我们假设管理对象的大小也是size,计算出kmem_bufctl_t数组的大小 ,即此大小的kmem_bufctl_t数组一定会造成管理对象是外置式slab。之所以说粗略 ,是指数组大小小于这个限制时,也不能确保管理对象一定是内置式slab。但这也不会引发错误 ,因为还有一个slab_break_gfp_order阀门来控制每个slab所占页面数,通常其值为1,即每个slab最多两个页面 ,外置式slab存放的都是大于512的大对象,所以 slab中不会有太多的大对象,kmem_bufctl_t数组也不会很大,粗略判断一下就足够了。 */ offslab_limit = size - sizeof(struct slab); offslab_limit /= sizeof(kmem_bufctl_t); /* 对象数目大于限制,跳出循环,不再尝试更大的order ,避免slab中对象数目过多 ,此时计算的对象数也是有效的,循环一次没什么 */ if (num > offslab_limit) break; } /* Found something acceptable - save it away */ /* 每个slab中的对象数 */ cachep->num = num; /* slab的order,即由几个页面组成 */ cachep->gfporder = gfporder; /* slab中剩余空间(碎片)的大小 */ left_over = remainder; /* * A VFS-reclaimable slab tends to have most allocations * as GFP_NOFS and we really don't want to have to be allocating * higher-order pages when we are unable to shrink dcache. */ /* SLAB_RECLAIM_ACCOUNT表示此slab所占页面为可回收的 ,当内核检测是否有足够的页面满足用户态的需求时 ,此类页面将被计算在内,通过调用 kmem_freepages()函数可以释放分配给slab的页框。由于是可回收的 ,所以不需要做后面的碎片检测了 */ if (flags & SLAB_RECLAIM_ACCOUNT) break; /* * Large number of objects is good, but very large slabs are * currently bad for the gfp()s. */ /* slab_break_gfp_order为slab所占页面的阀门,超过这个阀门时 ,无论碎片大小,都不再检测更高的order了 */ if (gfporder >= slab_break_gfp_order) break; /* * Acceptable internal fragmentation? */ /* slab所占页面的大小是碎片大小的8倍以上 ,页面利用率较高,可以接受这样的order */ if (left_over * 8 <= (PAGE_SIZE << gfporder)) break; } /* 返回碎片大小 */ return left_over; }
三、查找指定大小cache
/*在general cache中分配一个struct kmem_cache对象。直接调用__find_general_cachep。*/ static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) { return __find_general_cachep(size, gfpflags); }
static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags) { struct cache_sizes *csizep = malloc_sizes; #if DEBUG /* This happens if someone tries to call * kmem_cache_create(), or __kmalloc(), before * the generic caches are initialized. */ BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); #endif if (!size) return ZERO_SIZE_PTR; /* 找到合适的malloc size */ while (size > csizep->cs_size) csizep++; /* * Really subtle: The last entry with cs->cs_size==ULONG_MAX * has cs_{dma,}cachep==NULL. Thus no special case * for large kmalloc calls required. */ #ifdef CONFIG_ZONE_DMA if (unlikely(gfpflags & GFP_DMA)) return csizep->cs_dmacachep; #endif /* 返回该大小级别的cache */ return csizep->cs_cachep; }
四、设置CPU本地cache
/*配置local cache和slab三链。*/ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) { /* general cache初始化完毕,配置每个cpu的local cache */ if (g_cpucache_up == FULL) return enable_cpucache(cachep, gfp); /* 此时处于系统初始化阶段,g_cpucache_up记录general cache初始化的进度 ,比如PARTIAL_AC表示struct array_cache所在的cache已经创建, PARTIAL_L3表示struct kmem_list3所在的cache已经创建 ,注意创建这两个cache的先后顺序 。在初始化阶段只需配置主cpu的local cache和slab三链 */ if (g_cpucache_up == NONE) { /* * Note: the first kmem_cache_create must create the cache * that's used by kmalloc(24), otherwise the creation of * further caches will BUG(). */ /* 初始化阶段创建struct array_cache所在cache时进入这个流程 ,此时struct array_cache所在的general cache还未创建 ,只能使用静态分配的全局变量initarray_generic表示的local cache */ cachep->array[smp_processor_id()] = &initarray_generic.cache; /* * If the cache that's used by kmalloc(sizeof(kmem_list3)) is * the first cache, then we need to set up all its list3s, * otherwise the creation of further caches will BUG(). */ /* 创建struct kmem_list3所在的cache是在struct array_cache所在cache之后 ,所以此时struct kmem_list3所在的 cache也一定没有创建,也需要使用全局变量 */ set_up_list3s(cachep, SIZE_AC); /* 执行到这struct array_cache所在的cache创建完毕 ,如果struct kmem_list3和struct array_cache位于同一个general cache中 ,不会再重复创建了 ,g_cpucache_up表示的进度更进一步 */ if (INDEX_AC == INDEX_L3) g_cpucache_up = PARTIAL_L3; else g_cpucache_up = PARTIAL_AC; } else { /* g_cpucache_up至少为PARTIAL_AC时进入这个流程,struct array_cache所在的 general cache已经建立起来,可以通过kmalloc分配了 */ cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init), gfp); if (g_cpucache_up == PARTIAL_AC) { /* struct kmem_list3所在cache仍未创建完毕,还需使用全局的slab三链 */ set_up_list3s(cachep, SIZE_L3); /* 后面将会分析kmem_cache_init函数,只有创建struct kmem_list3所在 cache时才会进入此流程,上面的代码执行完,struct kmem_list3所在 cache也就创建完毕可以使用了,更新g_cpucache_up */ g_cpucache_up = PARTIAL_L3; } else { int node; for_each_online_node(node) { cachep->nodelists[node] =/* 通过kmalloc分配struct kmem_list3对象 */ kmalloc_node(sizeof(struct kmem_list3), gfp, node); BUG_ON(!cachep->nodelists[node]); /* 初始化slab三链 */ kmem_list3_init(cachep->nodelists[node]); } } } /* 设置回收时间 */ cachep->nodelists[numa_node_id()]->next_reap = jiffies + REAPTIMEOUT_LIST3 + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; cpu_cache_get(cachep)->avail = 0; cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; cpu_cache_get(cachep)->batchcount = 1; cpu_cache_get(cachep)->touched = 0; cachep->batchcount = 1; cachep->limit = BOOT_CPUCACHE_ENTRIES; return 0; }