tensorflow学习笔记(四):激活函数

tesorflow中的激活函数

所有激活函数 输入 和 输出 的维度是一样的

tf.nn.relu()
tf.nn.sigmoid()
tf.nn.tanh()
tf.nn.elu()
tf.nn.bias_add()
tf.nn.crelu()
tf.nn.relu6()
tf.nn.softplus()
tf.nn.softsign()
tf.nn.dropout()
tf.nn.relu_layer(x, weights, biases,name=None)
def relu_layer(x, weights, biases, name=None):
  """Computes Relu(x * weight + biases). Args: x: a 2D tensor. Dimensions typically: batch, in_units weights: a 2D tensor. Dimensions typically: in_units, out_units biases: a 1D tensor. Dimensions: out_units name: A name for the operation (optional). If not specified "nn_relu_layer" is used. Returns: A 2-D Tensor computing relu(matmul(x, weights) + biases). Dimensions typically: batch, out_units. """

你可能感兴趣的:(tensorflow学习笔记(四):激活函数)