import numpy as np import matplotlib.pyplot as plt from pylab import * conf_arr=[[13,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,4,0,5,0,1,0,0,], [0,0,0,0,0,0,0,1,0,0,0,0,2,0,2,0,1,0,2,1,2,0,0,0,0,0,0,0,1,0,10,5,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,], [0,0,9,0,0,0,0,1,0,0,0,0,1,0,0,2,0,0,1,1,0,0,0,0,0,1,1,0,2,0,0,0,0,0,0,2,0,1,0,0,0,0,1,0,4,0,1,0,0,0,2,], [1,0,0,12,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,2,0,0,0,0,0,4,0,0,0,3,0,0,0,0,0,1,0,1,0,0,], [0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,3,1,0,1,0,1,0,0,0,0,6,2,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,0,3,0,2,0,2,], [0,0,0,1,0,6,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,1,0,1,1,0,0,0,0,0,0,0,0,0,0,2,0,8,0,2,0,1,0,0,0,0,], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,0,0,0,0,0,1,0,0,0,0,0,5,0,3,1,1,0,0,0,0,1,0,0,0,0,7,0,1,0,0,0,0,3,1,], [0,0,0,0,0,0,0,10,0,0,0,0,5,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,3,4,0,0,0,0,0,2,0,0,0,0,0,0,1,0,1,0,0,0,1,], [0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,1,2,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,2,0,4,0,1,3,6,], [0,0,2,0,0,0,0,0,1,6,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,3,0,0,0,0,8,0,0,0,2,0,1,0,0,0,0,0,0,0,2,0,1,0,0,1,0,], [0,0,0,0,0,0,0,0,0,0,2,1,2,0,0,0,0,0,1,0,0,0,1,0,0,2,1,0,0,0,0,0,0,0,0,0,0,3,1,0,3,0,1,0,2,0,6,0,2,2,0,], [0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1,3,0,0,4,0,2,0,2,0,5,0,0,1,2,], [0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,1,0,3,0,1,0,2,1,0,], [1,0,0,0,0,0,0,0,0,1,0,0,2,2,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,4,1,1,0,0,1,1,0,1,0,0,0,1,0,9,0,0,0,0,2,0,], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,3,0,0,0,1,0,0,0,0,0,2,0,1,0,4,10,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,1,0,], [0,0,0,0,0,3,0,0,1,2,0,0,0,0,0,13,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,4,0,0,0,0,0,0,0,0,0,2,0,0,0,1,], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,1,0,0,0,0,0,0,1,0,0,3,3,1,3,0,0,2,0,1,2,0,0,0,0,0,0,3,0,2,0,0,1,1,], [0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,6,1,0,2,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,2,0,3,1,0,0,0,0,1,0,3,0,0,1,0,], [0,0,0,0,0,1,0,1,0,1,0,0,2,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,1,2,1,0,0,0,0,0,3,0,0,0,0,3,0,], [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,13,0,0,0,0,0,0,0,0,0,1,0,5,1,0,0,0,0,0,0,0,0,1,1,0,3,0,2,0,0,0,0,], [0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,2,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,6,0,2,0,1,4,1,], [0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,3,1,1,0,0,0,0,0,2,0,0,3,5,1,0,2,0,1,0,0,0,2,0,0,0,0,0,0,0,0,4,0,], [0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,0,0,0,9,0,0,1,0,0,0,0,0,2,0,0,0,0,2,1,1,0,4,0,1,0,0,0,4,0,1,0,0,], [0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,1,3,0,0,1,0,0,0,0,3,1,1,0,7,0,1,0,2,0,3,0,0,1,0,], [0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,1,4,2,0,0,0,1,0,0,0,0,1,4,0,3,0,3,0,0,1,0,], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,1,0,0,0,0,1,1,1,0,2,0,1,0,0,0,0,0,6,0,0,0,0,], [0,0,0,2,0,5,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,17,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,], [0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,1,0,2,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,2,0,0,1,0,0,0,10,0,2,0,1,5,1,], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,9,1,1,2,0,0,0,0,1,1,1,0,3,0,0,0,5,0,0,0,1,2,0,], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,2,17,0,0,0,0,1,0,0,0,0,0,3,0,0,0,1,0,2,0,0,0,0,], [0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,5,0,15,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,20,1,0,0,0,0,1,0,0,0,0,0,0,2,0,1,0,0,2,0,], [0,0,0,0,0,0,0,3,0,0,0,0,4,0,1,2,1,0,2,0,1,0,0,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,1,0,2,0,1,0,0,4,0,], [0,0,2,1,0,0,0,0,1,2,0,0,0,0,0,2,0,0,3,0,0,0,0,0,0,0,0,0,1,1,1,2,2,0,0,0,8,1,0,0,0,0,0,0,1,0,1,0,0,1,0,], [2,0,8,0,0,0,0,0,5,2,0,0,1,0,0,0,0,0,3,1,0,1,0,0,0,1,0,0,1,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,22,0,0,0,0,], [0,0,1,1,0,0,0,0,0,1,0,0,1,0,0,3,0,0,1,0,2,0,0,0,0,0,1,0,1,0,0,3,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,0,2,0,], [0,0,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,17,0,0,0,0,3,0,0,0,1,0,1,0,1,], [3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,2,0,0,0,0,1,0,1,0,14,0,0,1,1,0,0,0,3,0,0,0,0,], [1,0,0,4,0,2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,1,0,0,1,0,6,2,1,0,2,0,1,0,0,0,0,0,3,0,0,], [1,0,0,1,0,1,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,3,1,0,0,8,0,1,0,1,0,5,0,1,0,0,], [0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,2,0,3,4,0,0,3,0,0,2,0,0,0,4,0,0,2,0,0,0,1,3,0,], [0,0,1,0,0,0,0,1,0,0,0,1,2,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,15,0,0,0,0,0,3,1,0,], [0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,3,0,0,1,0,1,0,0,0,0,3,0,0,0,0,1,3,1,0,1,0,0,2,0,0,0,0,2,0,8,0,0,0,0,2,0,], [0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,2,1,0,1,0,1,2,0,0,0,1,0,0,1,0,0,2,0,0,1,0,2,2,0,0,0,0,0,0,8,0,0,0,1,0,1,], [1,0,0,0,0,0,0,0,4,1,0,1,1,0,0,2,1,0,2,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,1,2,2,0,0,0,0,0,0,1,0,0,0,4,2,2,], [0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,18,0,1,0,0,], [1,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,2,0,0,0,3,0,0,0,0,0,0,1,1,0,2,1,0,0,1,2,2,0,0,0,0,0,0,0,5,0,5,0,0,0,1,], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,1,0,0,0,1,0,7,9,1,], [1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,2,0,0,1,0,3,0,5,0,1,0,1,11,0,], [0,0,0,1,0,0,0,0,0,0,0,1,2,0,0,2,0,0,2,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,3,3,0,0,0,0,2,0,2,0,1,0,3,1,3,], ]; norm_conf = [] for i in conf_arr: a = 0 tmp_arr = [] a = sum(i, 0) for j in i: tmp_arr.append(float(j)/float(a)) norm_conf.append(tmp_arr) fig = plt.figure() plt.clf() ax = fig.add_subplot(111) ax.set_aspect(1) res = ax.imshow(np.array(norm_conf), cmap=plt.cm.jet, interpolation='nearest') width = len(conf_arr) height = len(conf_arr[0]) ##for x in xrange(width): ## for y in xrange(height): ## ax.annotate(str(conf_arr[x][y]), xy=(y, x), ## horizontalalignment='center', ## verticalalignment='center') cb = fig.colorbar(res) alphabet = ['brush_hair','cartwheel','catch','chew','clap','climb','climb_stairs','dive','draw_sword','dribble','drink','eat','fall_floor','fencing', 'flic_flac','golf','handstand','hit','hug','jump','kick','kick_ball','kiss','laugh','pick','pour','pullup','punch','push','pushup','ride_bike', 'ride_horse','run','shake_hands','shoot_ball','shoot_bow','shoot_gun','sit','situp','smile','smoke','somersault','stand','swing_baseball','sword', 'sword_exercise','talk','throw','turn','walk','wave']; plt.xticks(fontsize=7) plt.yticks(fontsize=7) locs, labels = plt.xticks(range(width), alphabet[:width]) for t in labels: t.set_rotation(90) #plt.xticks('orientation', 'vertical') #locs, labels = xticks([1,2,3,4], ['Frogs', 'Hogs', 'Bogs', 'Slogs']) #setp(alphabet, 'rotation', 'vertical') plt.yticks(range(height), alphabet[:height]) plt.savefig('confusion_matrix.png', format='png')
from http://blog.sina.com.cn/s/blog_4db1685d010189qj.html