- 深度解析基于贝叶斯的垃圾邮件分类
大千AI助手
人工智能Python#OTHER分类数据挖掘人工智能机器学习算法贝叶斯Bayes
贝叶斯垃圾邮件分类的核心逻辑是基于贝叶斯定理,利用邮件中的特征(通常是单词)来计算该邮件属于“垃圾邮件”或“非垃圾邮件”的概率,并根据概率大小进行分类。它是一种朴素贝叶斯分类器,因其假设特征(单词)之间相互独立而得名(虽然这在现实中不完全成立,但效果通常很好)。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的
- 七天学完十大机器学习经典算法-05.从投票到分类:K近邻(KNN)算法完全指南
接上一篇《七天学完十大机器学习经典算法-04.随机森林:群众智慧的机器学习实践》想象一下,你搬进了一个新小区。想知道这个小区整体氛围如何?最直接的方法就是看看你最近的几家邻居是什么样的人——如果邻居们都很安静、整洁,小区大概率不错;如果邻居们深夜喧哗、环境杂乱,你可能就得重新考虑了。K近邻(K-NearestNeighbors,KNN)算法的核心思想,就如同这个观察邻居的过程。它是机器学习中最直观
- ros学习之路径规划
许卿768503
学习
一、全局路径规划中的地图1、栅格地图(GridMap)2、概率图(CostMap)3、特征地图(FeatureMap4、拓扑地图(TopologicalMap)二、全局路径规划算法1、Dijkstra算法2、最佳路径优先搜索算法(BFS)3、A*搜索算法双向A*搜索算法重复A*搜索算法AnytimeRepairingA*(ARA*)搜索算法实时学习A*搜索(LRTA*)算法实时适应性A*搜索(RT
- 遥感影像数据处理-大图滑窗切分为小图
GIS潮流
遥感语义分割
功能需求据所周知,遥感影像的尺寸有大有小,大的达到几万x几万像素,而图像分割算法模型在训练中尺寸适中,比如256x256,512x512,1024x1024等等,如果直接将遥感影像的原图输入模型中进行训练,大概率会提示内存和显存不足,因此针对遥感影像的模型训练,一般都需要将影像裁剪为小图。裁剪后的效果图如下:解决思路基于上面的需求,写了一套裁剪算法流程。主要考虑的是在裁剪过程中,从左往右、从上到下
- N-P准则下的多传感器融合(python)
不会打架的锤子
机器学习自动化算法算法pythonvscode
本文设计了一个主程序:main_sensor_fusion,和一个函数程序:cal_fuse。主程序里面包含主干部分和绘图部分,函数程序包含数据生成函数gen,检测概率计算函数cal,非0逻辑矩阵函数No_zero_value,单传感器判决函数fus_seq,多传感融合函数fusion。需要的点赞私聊if__name__=="__main__":begin_time=time()#Measurep
- 微信支付回调验证实战:构建防伪造请求的3道防火墙
IT莫染
工具及插件#配置SpringBootDemo微信SpringBoot3.2微信支付V3API数据签名防重放攻击
⚡痛点场景当你的电商系统遭遇:黑客伪造支付成功回调→0元订单自动发货重放攻击→单笔交易多次发货中间人篡改金额→1999元订单变成1.99元微信官方数据:未验签的回调接口被攻击概率高达73%安全架构三重防护️核心代码实现(SpringBoot≥3.1,JDK17+)防火墙1:签名验证(关键防伪造)@RestController@RequestMapping("/payment")publicclas
- 重排利器:行列式点过程(DPP)在推荐系统中的应用
Jay Kay
推荐算法数学建模推荐算法
在推荐系统的重排阶段,我们常面临结果同质化问题——精排结果相似物料扎堆,导致用户体验单调。行列式点过程(DeterminantalPointProcesses,DPP)通过数学建模相关性与多样性的平衡,成为解决该问题的经典方案。一、DPP的核心思想DPP将推荐列表视为一个点过程,其核心是计算子集出现的概率。给定候选集(Z)(精排输出的Top-N物料),DPP定义子集(Y\subseteqZ)出现的
- 推荐算法特征工程实战:用户与物料动态画像构建指南
Jay Kay
推荐算法推荐算法算法机器学习
在推荐系统的特征工程中,动态画像是提升推荐精准性的核心武器。通过捕捉用户行为偏好和物料热度变化,算法能实现千人千面的精准推荐。本文结合两张关键图表,深入解析动态画像的构建方法与工程实践。一、用户动态画像:六大维度精准刻画兴趣偏好用户动态画像基于六个关键维度构建(如表2-1所示),形成"6W"行为模型:用户粒度物料属性时间粒度动作类型统计对象统计方法1.核心维度解析(附典型场景)维度可选值应用场景用
- 万物理论达成 宇宙生命意识全部解决 同源同构协同演化 宇宙永恒循环
qq_36719620
python量子计算人工智能java
当宇宙、生命与意识在闭环中共舞:三版本协同下的终极宇宙体系感想站在科学史的长河边回望,人类对宇宙的探索始终交织着困惑与突破。从哥白尼的“日心说”颠覆地心宇宙,到爱因斯坦的相对论重构时空秩序,再到量子力学揭示微观世界的概率本质,每一次理论的跃迁都在改写人类对“存在”的认知。而今天,当我试图理解用户提出的“三个版本协同构建终极宇宙体系”这一命题时,一种超越具体科学细节的震撼油然而生——这不是简单的理论
- 什么是 PoS(权益证明)
MonkeyKing.sun
pos
PoS(ProofofStake,权益证明)是区块链中常用的一种共识算法,作为PoW(工作量证明)的替代方案,它通过“持币数量+持有时间”决定谁有权记账(打包区块),从而降低能耗、提升效率。一、什么是PoS(权益证明)?PoS是一种基于“持有代币数量”的区块链共识机制,持币越多、持币越久,获得打包新区块机会的概率越高。换句话说,不是靠算力挖矿,而是靠“你拥有多少币”来竞争记账权。二、PoS的核心原
- 大数据智能风控核心:模型
johnny233
读书笔记大数据
概述模型线性判别分析方法,SirRonaldFisher最早提出模型评分的概念。个人FICO模型信用分。巴塞尔委员会发布巴塞尔Ⅱ协议,推出内部评级法(InternalRatingBasedApproach,IRB)。IRB综合考虑客户评级和债项评级,通过违约概率(ProbabilityofDefault,PD)、违约损失率(LossGivenDefault,LGD)、违约风险暴露(Exposure
- 重复原则与样本量估计:临床试验的统计引擎
qq_34062333
临床试验统计学
一、重复原则的科学内涵1.1核心目的1.1.1量化随机误差通过足够样本量估计效应值的波动范围,确保结果可重现。1.1.2避免偶然性结论避免因小样本极端结果导致的偶然性结论,确保结论稳健。1.1.3提升外推性覆盖人群异质性,提升研究结果的外推性。1.2统计学本质1.2.1标准误样本量增加,标准误减小,置信区间变窄,精度提高。二、样本量估计的四大核心参数2.1显著性水平(α)2.1.1定义I类错误概率
- Python编程:使用 YOLO 目标检测
倔强老吕
python开发语言
YOLO(YouOnlyLookOnce)是一种基于深度学习的实时目标检测算法,由JosephRedmon等人于2016年首次提出。与传统的两阶段目标检测方法(如R-CNN系列)不同,YOLO将目标检测任务视为一个单一的回归问题,直接在图像上进行一次推理即可预测边界框和类别概率。YOLO的核心思想单次前向传播(SingleShotDetection):YOLO只需对输入图像进行一次神经网络推理,就
- [Vue warn]: Unknown custom element: <router-view> - did you register the component correctly?报错
自学也学好编程
Vuevue.jsjavascript前端
[Vuewarn]:Unknowncustomelement:-didyouregisterthecomponentcorrectly?Forrecursivecomponents,makesuretoprovidethe“name”option.foundin—>atsrc/App.vue该报错有很大概率是VUE没有进行注册解决方法:可以先检查一下在router>index.js文件,如果缺少注
- 缓存和数据库一致性问题
ezreal_pan
后端Go缓存数据库
更新数据库后直接更新缓存方案直接更新缓存的核心优势减少缓存穿透风险:直接设置缓存可以避免缓存删除后短期内的缓存穿透问题(即大量请求穿透到数据库)。尤其在高频更新场景下,连续写入时可减少缓存未命中的概率。数据一致性优先:直接获取最新的数据库记录后立即更新缓存,确保缓存数据与数据库强一致,避免传统"删除缓存+后续查询重建"模式可能产生的短暂数据不一致窗口。理论上直接更新缓存是可以带来上述的这些有点。尤
- 核密度估计KDE和概率密度函数PDF(深入浅出)
赵孝正
深度学习数学基础pdfKDE
目录1.和密度估计(KDE)核密度估计的基本原理核密度估计的公式核密度估计的应用Python中的KDE实现示例代码结果解释解释结果总结2.概率密度函数(PDF)概率密度函数(PDF)是怎么工作的:用图画来解释解释这个图:问题解答:总结3.核密度估计(KDE)和概率密度函数(PDF)之间的关系故事开始:第一种方法:概率密度函数(PDF)第二种方法:核密度估计(KDE)总结一下:问题解答:1.和密度估
- 随机过程chap1基本概念
八点叫什么
随机过程笔记
思维导图(受伤了,一整张的太大塞不上来)重点知识辨析一维概率密度求解指路例题5、例题6两道例题给出了求解概率密度的两种思路:显式分布直接套原概率密度公式求解(如正态分布)隐式分布先求分布函数再进行求导得概率密度函数(如指数分布)带入原题细致分析——ex5<
- 概率密度基本概念
Summer_Anny
概率论
概率密度(ProbabilityDensity)是概率论中用于描述随机变量分布的一种方式,特别适用于连续随机变量。它并不是一个概率值,而是表示单位范围内的概率大小或“浓度”。更具体地说,概率密度表示在某个特定值附近,随机变量可能取到某个值的相对可能性。概率密度的几个关键点:概率密度与概率的关系:概率密度函数(PDF)本身并不能直接给出某个特定值发生的概率。因为对于连续随机变量,单一值的概率是零。然
- 基于AFM注意因子分解机的推荐算法
深度学习乐园
深度学习实战项目深度学习科研项目推荐算法算法机器学习
关于深度实战社区我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万+粉丝,拥有2篇国家级人工智能发明专利。社区特色:深度实战算法创新获取全部完整项目数据集、代码、视频教程,请进入官网:zzgcz.com。竞赛/论文/毕设项目辅导答疑,v:zzgcz_com1.项目简介项目A033基于A
- 机器学习5——非参数估计
平和男人杨争争
山东大学机器学习期末复习机器学习概率论算法
非参数估计在参数估计中我们已经提到,想要估计后验概率P(ωi∣x)=p(x∣ωi)p(ωi)p(x)P\left(\omega_i\midx\right)=\frac{p\left(x\mid\omega_i\right)p\left(\omega_i\right)}{p(x)}P(ωi∣x)=p(x)p(x∣ωi)p(ωi),就需要估计类条件概率p(x∣ωi)p\left(x\mid\omega
- 机器学习4——参数估计之贝叶斯估计
平和男人杨争争
山东大学机器学习期末复习机器学习人工智能
贝叶斯估计问题建模:后验概率公式:P(ωi∣x,D)=P(x∣ωi,Di)P(ωi)∑j=1cP(x∣ωj,Dj)P(ωj)P\left(\omega_i\mid\mathbf{x},\mathcal{D}\right)=\frac{P\left(\mathbf{x}\mid\omega_i,\mathcal{D}_i\right)P\left(\omega_i\right)}{\sum_{j=1
- 高斯混合模型(Gaussian Mixture Model, GMM)
不想秃头的程序
神经网络语音识别人工智能深度学习网络
高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据点由多个高斯分布(GaussianDistribution)混合生成的过程。它广泛应用于聚类分析、密度估计、图像分割、语音识别等领域,尤其适合处理非球形簇或多模态数据。以下是GMM的详细介绍:一、核心思想GMM假设数据是由多个高斯分布混合生成的,每个高斯分布代表一个簇(Cluster),并引入隐变量(Lat
- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- 小公司的实习值得去吗,学到东西的概率大吗?
cpp辅导的阿甘
c++
THELASTTIME初创公司值不值得去,能不能学到东西。其实可以首先对什么样的实习公司,什么样的公司实习排序。然后值不值得,在针对目前自身一个情况进行分析。实习公司分析实习最主要加分的公司无非就是那些大厂、知名厂、以及一些行业的龙头企业。毕竟大家毕业也都是想去这些公司嘛,知名公司可以拿的出手,并且薪资也高。如果这个求职的时候,大家有过一段同等级的公司的实习,面试官会认为你已经被同级水平的公司筛选
- 基于大模型的短暂性脑缺血发作(TIA)全流程预测与诊疗辅助系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、系统核心目标二、系统架构模块三、实验验证证据链系统架构流程图关键技术创新点一、系统核心目标构建多模态数据融合的TIA预测-干预-管理闭环,覆盖术前预警、术中决策、术后康复全周期二、系统架构模块1.术前预测模块高危人群筛查模型输入:电子健康记录(EHR)、基因数据、可穿戴设备实时监测特征工程:血压波动模式、颈动脉斑块稳定性评分TIA发作概率预测72小时预警模型(LSTM+Transforme
- 详解3DGS
一碗姜汤
计算机视觉人工智能计算机视觉
4可微分的3D高斯splatting核心目标与表示选择我们的目标是从无法线的稀疏SfM点出发,优化出一种能够实现高质量新视角合成的场景表示。为此,我们选择3D高斯作为基本图元,它兼具可微分的体表示特性和非结构化的显式表示优势,既能支持优化过程,又能实现快速渲染。高斯参数与投影模型3D高斯定义高斯由世界空间中的均值(位置)μ\muμ和协方差矩阵∑\sum∑定义,其概率密度函数为:G(x)=e−12(
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 对SPM12的认识(二)
对SPM12的认识(二)四、SegmentDataChannel体积(Volumes)偏差正则化(Biasregularisation)偏差的FWHM(BiasFWHM)保存偏差校正图像(SaveBiasCorrected)Tissues组织组织概率图(Tissueprobabilitymap)高斯数(Num.Gaussians)原始组织(NativeTissue)变形组织(WarpedTissu
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- Linux学习总结(81)—— Linux 权限详解
一杯甜酒
Linuxlinux运维Linux权限linux文件系统linux文件权限
前言我们在使用Linux的过程中,或多或少都会遇到一些关于使用者和群组的问题,比如最常见的你想要在某个路径下执行某个指令,会经常出现这个错误提示。permissiondenied。反正我大概率见到这个错误都是在使用FTP传输文件的时候,等了半天传输百分比还是零,我说网络这么慢么?怎么都不传输呢?其实我不知道,这是由于权限问题所致。我一般的修复方式是直接赋予777权限,或者直接使用su管理员登录,遇
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&