YarnClientImpl.java
1.hadoop wordcount程序:
public class WordCount { public static class WordCountMap extends Mapper<LongWritable, Text, Text, IntWritable> { private final IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer token = new StringTokenizer(line); while (token.hasMoreTokens()) { word.set(token.nextToken()); context.write(word, one); } } } public static class WordCountReduce extends Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } context.write(key, new IntWritable(sum)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = new Job(conf); job.setJarByClass(WordCount.class); job.setJobName("wordcount"); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setMapperClass(WordCountMap.class); job.setReducerClass(WordCountReduce.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } }
/** * Submit the job to the cluster and wait for it to finish. * @param verbose print the progress to the user * @return true if the job succeeded * @throws IOException thrown if the communication with the * <code>JobTracker</code> is lost */ public boolean waitForCompletion(boolean verbose ) throws IOException, InterruptedException, ClassNotFoundException { if (state == JobState.DEFINE) { submit(); } if (verbose) { monitorAndPrintJob(); } else { // get the completion poll interval from the client. int completionPollIntervalMillis = Job.getCompletionPollInterval(cluster.getConf()); while (!isComplete()) { try { Thread.sleep(completionPollIntervalMillis); } catch (InterruptedException ie) { } } } return isSuccessful(); }if判断state == JobState.DEFINE中变量state已初始化为JobState.DEFINE,所以执行submit提交Job,在下步中详细分析submit函数。
3.waitForCompletion()中的submit()函数
/** * Submit the job to the cluster and return immediately. * @throws IOException */ public void submit() throws IOException, InterruptedException, ClassNotFoundException { ensureState(JobState.DEFINE); setUseNewAPI(); connect(); final JobSubmitter submitter = getJobSubmitter(cluster.getFileSystem(), cluster.getClient()); status = ugi.doAs(new PrivilegedExceptionAction<JobStatus>() { public JobStatus run() throws IOException, InterruptedException, ClassNotFoundException { return submitter.submitJobInternal(Job.this, cluster); } }); state = JobState.RUNNING; LOG.info("The url to track the job: " + getTrackingURL()); }ensureState(JobState.DEFINE)校验job状态;
4.JobSubmitter类下的submitJobInternal()函数
/** * Internal method for submitting jobs to the system. * * <p>The job submission process involves: * <ol> * <li> * Checking the input and output specifications of the job. * </li> * <li> * Computing the {@link InputSplit}s for the job. * </li> * <li> * Setup the requisite accounting information for the * {@link DistributedCache} of the job, if necessary. * </li> * <li> * Copying the job's jar and configuration to the map-reduce system * directory on the distributed file-system. * </li> * <li> * Submitting the job to the <code>JobTracker</code> and optionally * monitoring it's status. * </li> * </ol></p> * @param job the configuration to submit * @param cluster the handle to the Cluster * @throws ClassNotFoundException * @throws InterruptedException * @throws IOException */ JobStatus submitJobInternal(Job job, Cluster cluster) throws ClassNotFoundException, InterruptedException, IOException { //validate the jobs output specs checkSpecs(job); Configuration conf = job.getConfiguration(); addMRFrameworkToDistributedCache(conf); Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf); //configure the command line options correctly on the submitting dfs InetAddress ip = InetAddress.getLocalHost(); if (ip != null) { submitHostAddress = ip.getHostAddress(); submitHostName = ip.getHostName(); conf.set(MRJobConfig.JOB_SUBMITHOST,submitHostName); conf.set(MRJobConfig.JOB_SUBMITHOSTADDR,submitHostAddress); } JobID jobId = submitClient.getNewJobID(); job.setJobID(jobId); Path submitJobDir = new Path(jobStagingArea, jobId.toString()); JobStatus status = null; try { conf.set(MRJobConfig.USER_NAME, UserGroupInformation.getCurrentUser().getShortUserName()); conf.set("hadoop.http.filter.initializers", "org.apache.hadoop.yarn.server.webproxy.amfilter.AmFilterInitializer"); conf.set(MRJobConfig.MAPREDUCE_JOB_DIR, submitJobDir.toString()); LOG.debug("Configuring job " + jobId + " with " + submitJobDir + " as the submit dir"); // get delegation token for the dir TokenCache.obtainTokensForNamenodes(job.getCredentials(), new Path[] { submitJobDir }, conf); populateTokenCache(conf, job.getCredentials()); // generate a secret to authenticate shuffle transfers if (TokenCache.getShuffleSecretKey(job.getCredentials()) == null) { KeyGenerator keyGen; try { keyGen = KeyGenerator.getInstance(SHUFFLE_KEYGEN_ALGORITHM); keyGen.init(SHUFFLE_KEY_LENGTH); } catch (NoSuchAlgorithmException e) { throw new IOException("Error generating shuffle secret key", e); } SecretKey shuffleKey = keyGen.generateKey(); TokenCache.setShuffleSecretKey(shuffleKey.getEncoded(), job.getCredentials()); } copyAndConfigureFiles(job, submitJobDir); Path submitJobFile = JobSubmissionFiles.getJobConfPath(submitJobDir); // Create the splits for the job LOG.debug("Creating splits at " + jtFs.makeQualified(submitJobDir)); int maps = writeSplits(job, submitJobDir); conf.setInt(MRJobConfig.NUM_MAPS, maps); LOG.info("number of splits:" + maps); // write "queue admins of the queue to which job is being submitted" // to job file. String queue = conf.get(MRJobConfig.QUEUE_NAME, JobConf.DEFAULT_QUEUE_NAME); AccessControlList acl = submitClient.getQueueAdmins(queue); conf.set(toFullPropertyName(queue, QueueACL.ADMINISTER_JOBS.getAclName()), acl.getAclString()); // removing jobtoken referrals before copying the jobconf to HDFS // as the tasks don't need this setting, actually they may break // because of it if present as the referral will point to a // different job. TokenCache.cleanUpTokenReferral(conf); if (conf.getBoolean( MRJobConfig.JOB_TOKEN_TRACKING_IDS_ENABLED, MRJobConfig.DEFAULT_JOB_TOKEN_TRACKING_IDS_ENABLED)) { // Add HDFS tracking ids ArrayList<String> trackingIds = new ArrayList<String>(); for (Token<? extends TokenIdentifier> t : job.getCredentials().getAllTokens()) { trackingIds.add(t.decodeIdentifier().getTrackingId()); } conf.setStrings(MRJobConfig.JOB_TOKEN_TRACKING_IDS, trackingIds.toArray(new String[trackingIds.size()])); } // Write job file to submit dir writeConf(conf, submitJobFile); // // Now, actually submit the job (using the submit name) // printTokens(jobId, job.getCredentials()); status = submitClient.submitJob( jobId, submitJobDir.toString(), job.getCredentials()); if (status != null) { return status; } else { throw new IOException("Could not launch job"); } } finally { if (status == null) { LOG.info("Cleaning up the staging area " + submitJobDir); if (jtFs != null && submitJobDir != null) jtFs.delete(submitJobDir, true); } } }检验输出参数,获取配置信息和提交Job主机的地址,确定jobId,确定job submit目录,设置一些参数
5.YARNRunner类下的submitJob()函数
public JobStatus submitJob(JobID jobId, String jobSubmitDir, Credentials ts) throws IOException, InterruptedException { addHistoryToken(ts); // Construct necessary information to start the MR AM ApplicationSubmissionContext appContext = createApplicationSubmissionContext(conf, jobSubmitDir, ts); // Submit to ResourceManager try { ApplicationId applicationId = resMgrDelegate.submitApplication(appContext); ApplicationReport appMaster = resMgrDelegate .getApplicationReport(applicationId); String diagnostics = (appMaster == null ? "application report is null" : appMaster.getDiagnostics()); if (appMaster == null || appMaster.getYarnApplicationState() == YarnApplicationState.FAILED || appMaster.getYarnApplicationState() == YarnApplicationState.KILLED) { throw new IOException("Failed to run job : " + diagnostics); } return clientCache.getClient(jobId).getJobStatus(jobId); } catch (YarnException e) { throw new IOException(e); } }初始化Application上下文信息,上下文信息包括MRAppMaster所需要的内存、CPU,jobJar,jobConf,数据split,执行MRAppMaster的命令
6.ResourceMgrDelegate类下的submitApplication()函数:
public ApplicationId
submitApplication(ApplicationSubmissionContext appContext)
throws YarnException, IOException {
return client.submitApplication(appContext);
}
client.submitApplication(appContext);client对象是YarnClient,找到YarnClient的实现YarnClientImpl中的submitApplication方法
YarnClientImpl中的submitApplication()函数:
设置ApplicationId
封装提交Application请求,将上下文信息设置进去。
增加安全权限认证一些东西。
rmClient.submitApplication 用Hadoop RPC远程调用ResourcesManager端的ClientRMService类下的submitApplication()方法
定时获取Application状态,当Application状态为NEW或NEW_SAVING时,Application提交成功,或是在限定时间内一直没有提交成功就报超时错误。若是获取不到Application信息,就再一次用RPC远程调用提交Application。
public ApplicationId submitApplication(ApplicationSubmissionContext appContext)
throws YarnException, IOException {
ApplicationId applicationId = appContext.getApplicationId();
if (applicationId == null) {
throw new ApplicationIdNotProvidedException(
"ApplicationId is not provided in ApplicationSubmissionContext");
}
SubmitApplicationRequest request =
Records.newRecord(SubmitApplicationRequest.class);
request.setApplicationSubmissionContext(appContext);
// Automatically add the timeline DT into the CLC
// Only when the security and the timeline service are both enabled
if (isSecurityEnabled() && timelineServiceEnabled) {
addTimelineDelegationToken(appContext.getAMContainerSpec());
}
//TODO: YARN-1763:Handle RM failovers during the submitApplication call.
rmClient.submitApplication(request);
int pollCount = 0;
long startTime = System.currentTimeMillis();
while (true) {
try {
YarnApplicationState state =
getApplicationReport(applicationId).getYarnApplicationState();
if (!state.equals(YarnApplicationState.NEW) &&
!state.equals(YarnApplicationState.NEW_SAVING)) {
LOG.info("Submitted application " + applicationId);
break;
}
long elapsedMillis = System.currentTimeMillis() - startTime;
if (enforceAsyncAPITimeout() &&
elapsedMillis >= asyncApiPollTimeoutMillis) {
throw new YarnException("Timed out while waiting for application " +
applicationId + " to be submitted successfully");
}
// Notify the client through the log every 10 poll, in case the client
// is blocked here too long.
if (++pollCount % 10 == 0) {
LOG.info("Application submission is not finished, " +
"submitted application " + applicationId +
" is still in " + state);
}
try {
Thread.sleep(submitPollIntervalMillis);
} catch (InterruptedException ie) {
LOG.error("Interrupted while waiting for application "
+ applicationId
+ " to be successfully submitted.");
}
} catch (ApplicationNotFoundException ex) {
// FailOver or RM restart happens before RMStateStore saves
// ApplicationState
LOG.info("Re-submit application " + applicationId + "with the " +
"same ApplicationSubmissionContext");
rmClient.submitApplication(request);
}
}
return applicationId;
}
7.至此Job已提交到ResourceManager,提交Job Client端工作已经完成,server端就复杂了,在以后的博客里再做分析。