[置顶] hadoop2.0的mapreduce作业classpath研究

       hdfs raid从facebook移植过来很久了,包括hadoop0.20.203和hadoop2.4.0版本,但是最近才准备上线hadoop2.4.0版本的hdfs raid,上线前准备在好好测试测试,确保上线顺利,hdfs raid代码分成两部分,一部分是hdfs下面的代码,这部分代码上一次和其他patch一起已经上线,另外一部分是raid自己比较独立的代码,按照之前的计划,后一部分代码准备只部署在RaidNode节点和gateway上面,这样对集群的影响是最小的,不需要重启hadoop进程,在测试RaidNode的时候一切都很正常,但是昨天在gateway上面测试hdfs raid配置对提交job的影响时出现了问题,其实在gateway上面hdfs raid增加的配置比较简单,增加的配置是fs.hdfs.impl,值为DistributedRaidFileSystem,该类大部分功能主要由DistributedFileSystem来完成的,由配置项fs.raid.underlyingfs.impl来指定,DistributedRaidFileSystem自己有一个很大的功能就是数据恢复功能,当用户在gateway上面get数据时,如果要获取的数据出现数据块损坏,这个时候就由DistributedRaidFileSystem来完成数据恢复功能,同时gateway上面提交的job要处理的数据刚好数据块丢失时,也可以使用DistributedRaidFileSystem来恢复,hdfs-site.xml配置如下:

  <!-- raid begin -->
  <property>
    <name>fs.hdfs.impl</name>
    <value>org.apache.hadoop.hdfs.DistributedRaidFileSystem</value>
    <description>The FileSystem for hdfs: uris.</description>
  </property>
  <property>
     <name>fs.raid.underlyingfs.impl</name>
     <value>org.apache.hadoop.hdfs.DistributedFileSystem</value>
     <description>The raid FileSystem underlying impl.</description>
   </property>

在gateway上面提交mapreduce 作业时,MRAppMaster启动失败,jobhistory上面显示报找不着DistributedRaidFileSystem类错误。

2014-12-24 23:04:14,518 INFO [main] org.apache.hadoop.service.AbstractService: Service org.apache.hadoop.mapreduce.v2.app.MRAppMaster failed in state INITED; cause: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.hadoop.hdfs.DistributedRaidFileSystem not found
java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.hadoop.hdfs.DistributedRaidFileSystem not found
	at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1895)
	at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2379)
	at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2392)
	at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:89)
	at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2431)
	at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2413)
	at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:368)
	at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:167)
	at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.getFileSystem(MRAppMaster.java:496)
	at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.serviceInit(MRAppMaster.java:284)
	at org.apache.hadoop.service.AbstractService.init(AbstractService.java:163)
	at org.apache.hadoop.mapreduce.v2.app.MRAppMaster$1.run(MRAppMaster.java:1459)
	at java.security.AccessController.doPrivileged(Native Method)
	at javax.security.auth.Subject.doAs(Subject.java:415)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1550)
	at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.initAndStartAppMaster(MRAppMaster.java:1456)
	at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.main(MRAppMaster.java:1389)
Caused by: java.lang.ClassNotFoundException: Class org.apache.hadoop.hdfs.DistributedRaidFileSystem not found
	at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:1801)
	at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1893)
	... 16 more

这个错误很好理解,在提交job的时候,JobConf(继承类Configuration)会读取gateway上面的配置文件,包括core-site.xml、hdfs-site.xml、yarn-site.xml和mapred-site.xml文件,然后序列化成job.xml,并上传到hdfs,然后再NodeManager启动container运行MRAppMaster时,首先会将job.xml和其他文件,比如job.jar和分布式缓存等会被下载到本地,然后启动MRAppMaster,在MRAppMaster启动并初始化服务的时候有一个判断hdfs上面配置项yarn.app.mapreduce.am.staging-dir对应的目录是否存在,由于在NodeManager上面DistributedRaidFileSystem类对应的jar包没有部署,出现这个错误也能够给理解。

接下来就解决这个问题,我们的hdfs raid在tools下面,我手动将tools下面raid的jar包设置到NodeManager启动classpath里面去,这样NodeManager重启时就能拿到raid下面的class了。然后重启NodeManager,在gateway上面提交job,但是发现还是报相同的错误,既找不着类,我看了一下NodeManager启动的classpath:

-classpath /usr/local/hadoop-2.4.0/etc/hadoop:/usr/local/hadoop-2.4.0/etc/hadoop:/usr/local/hadoop-2.4.0/etc/hadoop:/usr/local/hadoop-2.4.0/share/hadoop/tools:/usr/local/hadoop-2.4.0/share/hadoop/tools/*:/usr/local/hadoop-2.4.0/share/hadoop/tools/lib/hadoop-raid-2.4.0.jar:/usr/local/hadoop-2.4.0/share/hadoop/common/lib/*:/usr/local/hadoop-2.4.0/share/hadoop/common/*:/usr/local/hadoop-2.4.0/share/hadoop/hdfs:/usr/local/hadoop-2.4.0/share/hadoop/hdfs/lib/*:/usr/local/hadoop-2.4.0/share/hadoop/hdfs/*:/usr/local/hadoop-2.4.0/share/hadoop/yarn/lib/*:/usr/local/hadoop-2.4.0/share/hadoop/yarn/*:/usr/local/hadoop-2.4.0/share/hadoop/mapreduce/lib/*:/usr/local/hadoop-2.4.0/share/hadoop/mapreduce/*:/usr/local/hadoop-2.4.0/contrib/capacity-scheduler/*.jar:/usr/local/hadoop-2.4.0/contrib/capacity-scheduler/*.jar:/usr/local/hadoop-2.4.0/share/hadoop/yarn/*:/usr/local/hadoop-2.4.0/share/hadoop/yarn/lib/*:/usr/local/hadoop-2.4.0/etc/hadoop/nm-config/log4j.properties org.apache.hadoop.yarn.server.nodemanager.NodeManager

在classpath中hadoop-raid-2.4.0.jar是存在的,那为啥还说找不着类呢,难不成MRAppMaster启动的时候不是继承父进程的classpath,没办法,那我就打印出container启动时给MRAppMaster设置的环境变量:

2014-12-24 13:11:46,547 INFO org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: liangjun:   HADOOP_YARN_HOME=/usr/local/hadoop-2.4.0
2014-12-24 13:11:46,547 INFO org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: liangjun: CLASSPATH= $PWD:job.jar/job.jar:job.jar/classes/:job.jar/lib/*:$PWD/*:$HADOOP_CONF_DIR:$HADOOP_COMMON_HOME/share/hadoop/common/*:$HADOOP_COMMON_HOME/share/hadoop/common/lib/*:$HADOOP_HDFS_HOME/share/hadoop/hdfs/*:$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*:$HADOOP_YARN_HOME/share/hadoop/yarn/*:$HADOOP_YARN_HOME/share/hadoop/yarn/lib/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*
2014-12-24 13:11:46,547 INFO org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: heliangjun: HADOOP_TOKEN_FILE_LOCATION=/data0/hadoop/local/usercache/hadoop/appcache/application_1418709224786_2697/container_1418709224786_2697_01_000001/container_tokens

从打印的环境变量看出,CLASSPATH只包含了common、hdfs、yarn和mapred下面的jar包,没有tools下面的包,验证结果表明,NodeManager启动的子进程没有继承其classpath,如果不是继承来了,那肯定是自己单独设置的,带着这样的怀疑查看了一下MRAppMaster相关的代码,果然找到了,在job正式提交到RM之前在YARNRunner.submitJob()中会进行相关信息的初始化工作,包括为启动MRAppMaster创建ApplicationSubmissionContext,MRAppMaster的classpath正式在这里设置的,在MRAppMaster.createApplicationSubmissionContext()方法中,调用了MRApps.setClasspath(environmentconf),

MRApps.setClasspath(environment,conf)方法进行环境变量设置,代码如下:

    // Setup the CLASSPATH in environment
    // i.e. add { Hadoop jars, job jar, CWD } to classpath.
    Map<String, String> environment = new HashMap<String, String>();
    MRApps.setClasspath(environment, conf);

    // Setup the environment variables for Admin first
    MRApps.setEnvFromInputString(environment, 
        conf.get(MRJobConfig.MR_AM_ADMIN_USER_ENV), conf);
    // Setup the environment variables (LD_LIBRARY_PATH, etc)
    MRApps.setEnvFromInputString(environment, 
        conf.get(MRJobConfig.MR_AM_ENV), conf);
进一步查看 MRApps.setClasspath( environment conf )方法细节,发现该方法调用了MRApps.setMRFrameworkClasspath( environment, conf)方法来设置MR框架的classpath,代码如下:

@SuppressWarnings("deprecation")
  public static void setClasspath(Map<String, String> environment,
      Configuration conf) throws IOException {
    boolean userClassesTakesPrecedence = 
      conf.getBoolean(MRJobConfig.MAPREDUCE_JOB_USER_CLASSPATH_FIRST, false);

    String classpathEnvVar = 
      conf.getBoolean(MRJobConfig.MAPREDUCE_JOB_CLASSLOADER, false)
        ? Environment.APP_CLASSPATH.name() : Environment.CLASSPATH.name();

    MRApps.addToEnvironment(environment,
      classpathEnvVar, crossPlatformifyMREnv(conf, Environment.PWD), conf);
    if (!userClassesTakesPrecedence) {
      MRApps.setMRFrameworkClasspath(environment, conf);
    }
    MRApps.addToEnvironment(
        environment,
        classpathEnvVar,
        MRJobConfig.JOB_JAR + Path.SEPARATOR + MRJobConfig.JOB_JAR, conf);
    MRApps.addToEnvironment(
        environment,
        classpathEnvVar,
        MRJobConfig.JOB_JAR + Path.SEPARATOR + "classes" + Path.SEPARATOR, conf);
    MRApps.addToEnvironment(
        environment,
        classpathEnvVar,
        MRJobConfig.JOB_JAR + Path.SEPARATOR + "lib" + Path.SEPARATOR + "*", conf);
    MRApps.addToEnvironment(
        environment,
        classpathEnvVar,
        crossPlatformifyMREnv(conf, Environment.PWD) + Path.SEPARATOR + "*", conf);
    // a * in the classpath will only find a .jar, so we need to filter out
    // all .jars and add everything else
    addToClasspathIfNotJar(DistributedCache.getFileClassPaths(conf),
        DistributedCache.getCacheFiles(conf),
        conf,
        environment, classpathEnvVar);
    addToClasspathIfNotJar(DistributedCache.getArchiveClassPaths(conf),
        DistributedCache.getCacheArchives(conf),
        conf,
        environment, classpathEnvVar);
    if (userClassesTakesPrecedence) {
      MRApps.setMRFrameworkClasspath(environment, conf);
    }
  }

这段代码有一个细节,就是 如果配置项mapreduce.job.user.classpath.first为true,既用户设置的classpath优先,那么在设置 MRAppMaster的classpath时,先设置用户的classpath,然后在设置MR框架的classpath:setMRFrameworkClasspath,这样用户提交job时通过-libjar设置的jar包就可以覆盖MR框架下面的包,这一点是很有用的,特别是对MR框架相关代码修改了之后,既不想替换集群的相关包,而又想要修改生效,这样一来就可以做到了。

回归正题,MRApps.setMRFrameworkClasspath(environmentconf)方法的代码:

private static void setMRFrameworkClasspath(
      Map<String, String> environment, Configurationconf) throws IOException {
    // Propagate the system classpath when using the mini cluster
    if (conf.getBoolean(YarnConfiguration.IS_MINI_YARN_CLUSTER,false)) {
      MRApps.addToEnvironment(environment, Environment.CLASSPATH.name(),
          System.getProperty("java.class.path"),conf);
    }
    booleancrossPlatform =
        conf.getBoolean(MRConfig.MAPREDUCE_APP_SUBMISSION_CROSS_PLATFORM,
          MRConfig.DEFAULT_MAPREDUCE_APP_SUBMISSION_CROSS_PLATFORM);
    // if the framework is specified then only use the MRclasspath
    String frameworkName = getMRFrameworkName(conf);
    if (frameworkName ==null) {
      // Add standard Hadoop classes
      for (String c :conf.getStrings(YarnConfiguration.YARN_APPLICATION_CLASSPATH,
          crossPlatform
              ? YarnConfiguration.DEFAULT_YARN_CROSS_PLATFORM_APPLICATION_CLASSPATH
              : YarnConfiguration.DEFAULT_YARN_APPLICATION_CLASSPATH)) {
        MRApps.addToEnvironment(environment, Environment.CLASSPATH.name(),
          c.trim(), conf);
      }
    }
    booleanfoundFrameworkInClasspath = (frameworkName ==null);
    for (String c :conf.getStrings(MRJobConfig.MAPREDUCE_APPLICATION_CLASSPATH,
        crossPlatform ?
            StringUtils.getStrings(MRJobConfig.DEFAULT_MAPREDUCE_CROSS_PLATFORM_APPLICATION_CLASSPATH)
            : StringUtils.getStrings(MRJobConfig.DEFAULT_MAPREDUCE_APPLICATION_CLASSPATH))) {
      MRApps.addToEnvironment(environment, Environment.CLASSPATH.name(),
        c.trim(), conf);
      if (!foundFrameworkInClasspath) {
        foundFrameworkInClasspath =c.contains(frameworkName);
      }
    }
    if (!foundFrameworkInClasspath) {
      throw new IllegalArgumentException(
          "Could not locate MapReduce framework name '" +frameworkName
          + "' in " + MRJobConfig.MAPREDUCE_APPLICATION_CLASSPATH);
    }
    // TODO: Remove duplicates.
  }

该方法设置了两个常量值到MRAppMaster的classpath里面去:

一个是yarn相关的,YarnConfiguration.DEFAULT_YARN_APPLICATION_CLASSPATH:

/**
   * <p>
   * Default platform-specific CLASSPATH for YARN applications. A
   * comma-separated list of CLASSPATH entries constructed based on the client
   * OS environment expansion syntax.
   * </p>
   * <p>
   * Note: Use {@link DEFAULT_YARN_CROSS_PLATFORM_APPLICATION_CLASSPATH} for
   * cross-platform practice i.e. submit an application from a Windows client to
   * a Linux/Unix server or vice versa.
   * </p>
   */
  public static final String[] DEFAULT_YARN_APPLICATION_CLASSPATH = {
      ApplicationConstants.Environment.HADOOP_CONF_DIR.$(),
      ApplicationConstants.Environment.HADOOP_COMMON_HOME.$()
          + "/share/hadoop/common/*",
      ApplicationConstants.Environment.HADOOP_COMMON_HOME.$()
          + "/share/hadoop/common/lib/*",
      ApplicationConstants.Environment.HADOOP_HDFS_HOME.$()
          + "/share/hadoop/hdfs/*",
      ApplicationConstants.Environment.HADOOP_HDFS_HOME.$()
          + "/share/hadoop/hdfs/lib/*",
      ApplicationConstants.Environment.HADOOP_YARN_HOME.$()
          + "/share/hadoop/yarn/*",
      ApplicationConstants.Environment.HADOOP_YARN_HOME.$()
          + "/share/hadoop/yarn/lib/*" };

第二个是MR相关的, MRJobConfig.DEFAULT_MAPREDUCE_APPLICATION_CLASSPATH ):

**
   * Default platform-specific CLASSPATH for all YARN MapReduce applications
   * constructed based on client OS syntax.
   * <p>
   * Note: Use {@link DEFAULT_MAPREDUCE_CROSS_PLATFORM_APPLICATION_CLASSPATH}
   * for cross-platform practice i.e. submit an application from a Windows
   * client to a Linux/Unix server or vice versa.
   * </p>
   */
  public final String DEFAULT_MAPREDUCE_APPLICATION_CLASSPATH =
      Shell.WINDOWS ? "%HADOOP_MAPRED_HOME%\\share\\hadoop\\mapreduce\\*,"
          + "%HADOOP_MAPRED_HOME%\\share\\hadoop\\mapreduce\\lib\\*"
          : "$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*,"
              + "$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*";

这两个常量里面都不包含tools,所以raid的jar包如果放置到tools下面,提交的job一直会找不着对应的类,既然如此,解决办法就是将raid的jar包放到上面也有的目录就可以了。我最后放到了common/lib下,而且因为没有继承NodeManager的classpath,所以不需要重启 NodeManager,每次提交job的时候MRAppMaster会自动加载一次classpath,这样一来如果后面上线hdfs raid,处理机上面只需要上次raid的jar包到common/lib下就行,不需要其他更多的操作。


 
 

你可能感兴趣的:(classpath,hdfs-raid,MR-classpath)