Anti-prime Sequences
Time Limit: 3000MS | Memory Limit: 30000K | |
Total Submissions: 2790 | Accepted: 1288 |
Description
Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement of these integers so that each adjacent pair of integers sums to a composite (non-prime) number. For example, if n = 1 and m = 10, one such anti-prime sequence is 1,3,5,4,2,6,9,7,8,10. This is also the lexicographically first such sequence.
We can extend the definition by defining a degree danti-prime sequence as one where all consecutive subsequences of length 2,3,...,d sum to a composite number. The sequence above is a degree 2 anti-prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically .rst degree 3 anti-prime sequence for these numbers is 1,3,5,4,6,2,10,8,7,9.
We can extend the definition by defining a degree danti-prime sequence as one where all consecutive subsequences of length 2,3,...,d sum to a composite number. The sequence above is a degree 2 anti-prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically .rst degree 3 anti-prime sequence for these numbers is 1,3,5,4,6,2,10,8,7,9.
Input
Input will consist of multiple input sets. Each set will consist of three integers, n, m, and d on a single line. The values of n, m and d will satisfy 1 <= n < m <= 1000, and 2 <= d <= 10. The line 0 0 0 will indicate end of input and should not be processed.
Output
For each input set, output a single line consisting of a comma-separated list of integers forming a degree danti-prime sequence (do not insert any spaces and do not split the output over multiple lines). In the case where more than one anti-prime sequence exists, print the lexicographically first one (i.e., output the one with the lowest first value; in case of a tie, the lowest second value, etc.). In the case where no anti-prime sequence exists, output
No anti-prime sequence exists.
No anti-prime sequence exists.
Sample Input
1 10 2 1 10 3 1 10 5 40 60 7 0 0 0
Sample Output
1,3,5,4,2,6,9,7,8,10 1,3,5,4,6,2,10,8,7,9 No anti-prime sequence exists. 40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54
题意:
给出 n(1 ~ 1000),m(1 ~ 1000),d(1 ~ 10)。要求重新排列 N 到 M 这个序列,排列的要求是任意连续 i (i <= d)个数的和都必须是合数,有则输出这个序列。
思路:
DFS + 素数筛选。搜的同时记录总和。素数要求筛选知道要到 1000 * 10 = 10000 而不是 1005,因此而WA了 N 遍。
AC:
#include <cstdio> #include <string.h> #define MAX 10005 using namespace std; int n,m,d,ans,temp; bool pri[MAX],vis[1005]; int fin[1005],sum[1005]; void make_pri() { for(int i = 0;i < MAX;i++) pri[i] = true; pri[0] = pri[1] = false; for(int i = 2;i * i < MAX;++i) if(pri[i]) { for(int j = i;i * j < MAX;++j) pri[i * j] = false; } } void dfs(int time,int val) { vis[val] = false; fin[time] = val; if(time) sum[time] = sum[time - 1] + val; if(temp) return; if(time >= 2) { int to = time <= d ? 0 : time - d; for(int i = time - 2 ;i >= to;i--) { int a = sum[time] - sum[i]; if(pri[a]) return; } } if(time == ans) { temp = 1; for(int i = 1;i <= time;i++) { printf("%d",fin[i]); i == time ? printf("\n") : printf(","); } return; } for (int i = n;i <= m;i++) { if (vis[i] && !temp) { dfs(time + 1,i); vis[i] = true; } } } int main() { make_pri(); while(~scanf("%d%d%d",&n,&m,&d) && (n + m + d)) { ans = m - n + 1; temp = 0; for(int i = n;i <= m;i++) vis[i] = true; dfs(0,0); if(!temp) puts("No anti-prime sequence exists."); } return 0; }