Arithmetic Progressions(简单枚举)

Arithmetic Progressions

An arithmetic progression is a sequence of the form a, a+b, a+2b, ..., a+nb where n=0,1,2,3,... . For this problem, a is a non-negative integer and b is a positive integer.

Write a program that finds all arithmetic progressions of length n in the set S of bisquares. The set of bisquares is defined as the set of all integers of the form p2 + q2 (where p and q are non-negative integers).

TIME LIMIT: 5 secs

PROGRAM NAME: ariprog

INPUT FORMAT

Line 1: N (3 <= N <= 25), the length of progressions for which to search
Line 2: M (1 <= M <= 250), an upper bound to limit the search to the bisquares with 0 <= p,q <= M.

SAMPLE INPUT (file ariprog.in)

5
7

OUTPUT FORMAT

If no sequence is found, a singe line reading `NONE'. Otherwise, output one or more lines, each with two integers: the first element in a found sequence and the difference between consecutive elements in the same sequence. The lines should be ordered with smallest-difference sequences first and smallest starting number within those sequences first.

There will be no more than 10,000 sequences.

SAMPLE OUTPUT (file ariprog.out)

1 4
37 4
2 8
29 8
1 12
5 12
13 12
17 12
5 20
2 24

 

   题意:

   给出N(3-25)和M(1-250),N代表需要找出一个长度为N的等差数列,M代表p和q的范围最大值,即 0 <= p, q <= M。有一个集合S,这个集合S里面的数是由两个数的平方和构成的,即每个数都可以表示成 p^2 + q^2。要求在S集合中找出所有满足长度为N的等差序列,输出 a1首项 和 d公差。先按 d 大到小排序输出,再按 a1 大到小排序输出。

 

   思路:

   简单枚举。注意超时。

   注意几点:

   1.一个数可以由不同的 p 和 q 平方和构成;

   2.用一个 num 数组记录这个数是否可以由 p 和 q 构成,另外用一个 dou 数组记录这些数是什么数(节省时间);

   3.得出来的 dou 数组不一定是由小到大顺序排序的,故得出来的 dou 数组要处理两步:排序,去重;

   4.不可以先预处理0到250范围的平方和数,而是输入 m 时候再处理 0 到 m ;

 

   TLE:

/* 
TASK:ariprog 
LANG:C++ 
ID:sum-g1 
*/

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;

typedef struct
{
    int a,b;
}node;
node seq[15000];
int num[150000],ans,n,m;

int cmp(node i,node j)
{
    if(i.b==j.b) return i.a<j.a;
    else         return i.b<j.b;
}

void solve()
{
    for(int i=0;i<=2*m*m;i++)    
    {
        if(num[i])    //枚举首项 a1
        {
            for(int j=i+1;j<=2*m*m;j++)
            {
                if(num[j])   //再枚举第二项求出公差 d
                {
                    int k;
                    for(k=2;k<=n-1;k++)
                        if((i+k*(j-i))>2*m*m||!num[i+k*(j-i)]) break;  
//这里的判断语句要小心应该先判断有没有超过范围,再判断这个数符不符合双平方和
//不然先判断 num 数组的话,如果超过了范围,就会导致RE
                    if(k==n)
                    {
                        ans++;
                        seq[ans].a=i,seq[ans].b=j-i;
                    }
                }
            }
        }
    }
}

int main()
{
    freopen("ariprog.in","r",stdin);  
    freopen("ariprog.out","w",stdout);    
    ans=0;
    memset(num,0,sizeof(num));
    scanf("%d%d",&n,&m);
    for(int i=0;i<=m;i++)
        for(int j=0;j<=m;j++)
        num[i*i+j*j]=1;
    solve();
    if(ans==0) printf("NONE\n");
    else
    {
        sort(seq+1,seq+ans+1,cmp);   //存起来后排序输出
        for(int i=1;i<=ans;i++)
            printf("%d %d\n",seq[i].a,seq[i].b);
    }
    return 0;
}

    直接枚举导致TLE;

 

    AC:

/*
TASK:ariprog
LANG:C++
ID:sum-g1
*/

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;

int num[150000],dou[150000],ans,n,m,sum;

void solve()
{
    for(int d=1;d*(n-1)<=2*m*m;d++)   //枚举公差 d
    {
        for(int i=1;i<sum;i++)
        {
            int j;
            for(j=1;j<=n-1;j++)
                if(dou[i]+j*d>2*m*m||!num[dou[i]+j*d]) break;   //直接break也可省时
            if(j==n)
            {
                ans++;
                printf("%d %d\n",dou[i],d);   //直接输出,不需要再另外保存
            }
        }
    }
    if(!ans)    printf("NONE\n");
}

int main()
{
    freopen("ariprog.in","r",stdin);  
    freopen("ariprog.out","w",stdout);     
    ans=0,sum=0;
    memset(num,0,sizeof(num));
    scanf("%d%d",&n,&m);
    for(int i=0;i<=m;i++)
        for(int j=i;j<=m;j++)
            if(!num[i*i+j*j])   //去重
            {
                sum++;
                dou[sum]=i*i+j*j;
                num[i*i+j*j]=1;
            }
    sort(dou+1,dou+1+sum);      //排序
    solve();
    return 0;
}

 

你可能感兴趣的:(progress)