- Python 计算文本相似度(Levenshtein、Jaccard、TF-IDF)
数据库管理员的恶梦fB
pythontf-idf开发语言
```htmlPython计算文本相似度(Levenshtein、Jaccard、TF-IDF)Python计算文本相似度(Levenshtein、Jaccard、TF-IDF)在自然语言处理(NLP)中,计算文本相似度是一个常见的任务。文本相似度可以用于搜索引擎优化、抄袭检测、推荐系统等多个领域。本文将介绍三种常用的文本相似度计算方法:Levenshtein距离、Jaccard相似系数和TF-I
- 人工智能向量化技术深度解析
二川bro
人工智能
人工智能向量化技术深度解析前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。https://www.captainbed.cn/ccc文章目录人工智能向量化技术深度解析一、向量化技术的数学基础1.1向量空间模型原理1.2主流嵌入模型对比二、文本向量化技术解析2.1词嵌入演进路线2.2语义相似度计算三、跨模态向量化实践3.1图文跨模态对齐3.2多模态统一
- 【Python使用】嘿马推荐系统全知识和项目开发教程第2篇:1.4 案例--基于协同过滤的电影推荐,1.5 推荐系统评估
python后端
教程总体简介:1.1推荐系统简介学习目标1推荐系统概念及产生背景2推荐系统的工作原理及作用3推荐系统和Web项目的区别1.3推荐算法1推荐模型构建流程2最经典的推荐算法:协同过滤推荐算法(CollaborativeFiltering)3相似度计算(SimilarityCalculation)4协同过滤推荐算法代码实现:二根据用户行为数据创建ALS模型并召回商品2.0用户行为数据拆分2.1预处理be
- [笔记.AI]向量化
俊哥V
由AI辅助创作AI技术理解人工智能AI向量化
(借助DeepSeek-V3辅助生成)向量化的定义向量化(Vectorization)是将文本、图像、音频等非结构化数据转换为高维数值向量(即一组数字)的过程。这些向量能够捕捉数据的语义、特征或上下文信息,使计算机能够通过数学运算(如相似度计算、聚类、分类等)处理和理解非结构化内容。为什么需要向量化?计算机无法直接理解文字、图片等非结构化数据,但可以高效处理数值。向量化通过将数据映射到数学空间,实
- 相似度计算全攻略:从理论到Python实战
gorgor在码农
#Python基础python开发语言
目录一、基于向量的相似度1.余弦相似度(CosineSimilarity)2.点积(DotProduct)3.欧氏距离(EuclideanDistance)4.曼哈顿距离(ManhattanDistance)二、基于集合的相似度1.Jaccard相似系数(JaccardIndex)2.余弦相似度的集合扩展三、基于统计的相似度1.皮尔逊相关系数(PearsonCorrelation)2.斯皮尔曼秩相
- DeepSeek:揭秘支持的AI模型与算法全览
鸭鸭鸭进京赶烤
人工智能机器人agiaiopencv算法计算机网络
以下是一些常见的AI模型和算法类型,DeepSeek可能支持的内容:1.自然语言处理(NLP)文本分类:用于情感分析、垃圾邮件检测等。命名实体识别(NER):从文本中提取人名、地点、组织等信息。机器翻译:支持多语言之间的自动翻译。文本生成:如GPT系列模型,用于生成文章、对话等。问答系统:基于BERT等模型的智能问答。语义相似度计算:判断两段文本的语义是否相似。2.计算机视觉(CV)图像分类:识别
- 【推荐系统】由浅入深
HP-Succinum
机器学习算法机器学习人工智能
目录一、相似度计算方法1.杰卡德系数2.余弦相似度3.编辑距离二、推荐系统算法1.基于内容的推荐系统2.协同过滤推荐系统三、冷启动问题与数据稀疏性问题1.冷启动问题2.数据稀疏性问题四、数据预处理的重要性五、结论在互联网时代,推荐系统已经成为各大平台提升用户体验和增加用户粘性的重要工具。无论是电商平台的商品推荐,还是视频平台的内容推荐,其核心思想都是通过计算对象之间的相似度,为用户提供个性化的推荐
- 【CSP】202403-2 相似度计算
zhoushanguhe
CSP算法数据结构c++c语言
2024年第33次CCF计算机软件能力认证202403-2相似度计算原题链接:相似度计算时间限制:1.0秒空间限制:512MiB题目背景两个集合的Jaccard相似度定义为:(,)=∣∩∣/∣∪∣即交集的大小除以并集的大小。当集合和完全相同时,(,)=1取得最大值;当二者交集为空时,(,)=0取得最小值。题目描述除了进行简单的词频统计,小P还希望使用Jaccard相似度来评估两篇文章的相似性。具体
- 相似度计算 ccf-csp 2024-2-2
ahahahahaha2333
ccf-csp(算法)算法c++数据结构
#includeusingnamespacestd;intmain(){//定义两个变量n和m,分别用于存储两篇文章的单词个数intn,m;//从标准输入读取n和m的值cin>>n>>m;//定义三个map容器,A用于存储并集,T用于标记第一篇文章中的单词,B用于存储交集mapA,T,B;//循环读取第一篇文章的n个单词for(inti=0;i>t;//遍历单词t的每个字符for(intj=0;j
- HarmonyOS NEXT AI基础视觉服务-人脸对比
harmonyos-next
案例描述这是一个基于AI基础视觉服务实现的人脸对比案例,通过调用设备相册选择两张图片进行人脸特征比对,并展示相似度计算结果。实现步骤:1.模块导入//导入功能模块import{photoAccessHelper}from'@kit.MediaLibraryKit';import{fileIo}from'@kit.CoreFileKit';import{image}from'@kit.ImageKi
- 搜广推校招面经五十五
Y1nhl
搜广推面经深度学习机器学习python推荐算法搜索算法广告算法人工智能
腾讯搜推面经一、双塔模型有什么缺点双塔模型(Two-TowerModel)是一种常见的推荐系统或检索系统架构,尤其在处理大规模用户-物品交互数据时表现出色。1.1.特征交互受限问题:双塔模型将用户特征和物品特征分别编码为两个独立的向量(用户塔和物品塔),然后在顶层通过简单的点积或余弦相似度计算得分。这种设计限制了用户特征和物品特征之间的细粒度交互。影响:无法捕捉复杂的特征交叉信息,可能导致模型性能
- 向量数据库简介
openwin_top
python编程示例系列python编程示例系列二数据库
向量数据库(VectorDatabase)是一种专门用于存储和查询向量数据的数据库系统。向量数据库通常使用高效的向量索引技术,支持基于向量相似度的查询和检索,可以应用于图像搜索、自然语言处理、推荐系统、机器学习等领域。与传统的关系型数据库不同,向量数据库通常使用基于向量的数据模型,将向量作为数据的核心表示形式。向量数据库可以存储和处理大量的向量数据,支持高效的向量相似度计算和查询。常见的向量索引技
- 相似度计算
Panesle
python人工智能算法
1.余弦相似度计算(不区分向量方向,互换顺序也相同)sen_vec1=sbert.get_sentence_emb(context15)#向量化sen_vec1=sen_vec1*(1.0/(np.linalg.norm(sen_vec1)+0.00001))#normal化sen_vec2=sbert.get_sentence_emb(context14)#向量化sen_vec2=sen_vec
- DeepSeek vs text2vec:谁更适合Python题库向量提取对比
黑金IT
向量数据库pythonpython开发语言
在Python培训题库提取标题和答案用于学习的应用场景中,选择text2vec-large-chinese和DeepSeek的优劣取决于具体需求和资源限制。以下是对两种模型在该场景下的适用性分析:1.应用场景分析在Python培训题库中,常见的任务可能包括:题目相似度计算:判断题目是否重复或相似。自动分类:将题目按照难度、知识点等分类。智能推荐:根据用户的学习进度推荐相关题目。文本特征提取:用于后
- 【RAG系列】文字的数字化分身 - 向量嵌入的魔法世界
什么都想学的阿超
原理概念#深度学习深度学习人工智能RAG
文字的数字化分身-向量嵌入的魔法世界文字向量编码器数字分身语义空间相似度计算代数运算关系推理一、认知革命:文字的数字基因工程1.1文字GPS坐标系想象每个词语都是银河系中的星球,向量坐标就是它们的星际坐标:经度:语义维度(动物/植物/人造物)纬度:情感维度(积极/中性/消极)高度:抽象维度(具体/抽象)#词语向量可视化示例words=["国王","王后","男人","女人","电脑"]embedd
- 如何利用USearch实现快速向量搜索:更轻量、更高效的替代方案
sdfugyd
python
引言向量搜索在现代机器学习和信息检索中扮演着重要角色。无论是图像检索、文本相似度计算还是推荐系统,向量搜索都是核心技术之一。本文将介绍一个轻量级、高效的向量搜索引擎——USearch。这种引擎与FAISS在功能上相似,但在设计上更为精简,具备更高的兼容性。接下来,我们将详细讲解如何安装和使用USearch,并提供实用的代码示例。主要内容1.USearch与FAISS的对比USearch的基础功能与
- 使用 AnyscaleEmbeddings 进行文本嵌入
dgay_hua
python
在自然语言处理(NLP)领域中,嵌入(Embedding)是一种将文本转换为向量表示的方法。今天,我们将通过AnyscaleEmbeddings类来演示如何进行文本嵌入,它能有效地将文本转换为高维向量,这在文本相似度计算、文本分类等任务中非常有用。1.技术背景介绍嵌入模型是NLP中的一种常见技术,它能够将语言数据映射为固定长度的高维向量。通过预训练模型(如BERT、GPT等),我们可以获得语义丰富
- 利用Infinity Embeddings创建文本嵌入
qahaj
python
技术背景介绍在自然语言处理(NLP)任务中,文本嵌入是一种将文本数据转换成固定维度向量的技术。这些向量能够捕捉文本之间的语义关系,使得在后续的任务(如文本分类、相似度计算等)中非常实用。Infinity嵌入模型是一种能够方便创建高质量文本嵌入的现代工具。核心原理解析InfinityEmbeddings利用强大的预训练模型,通过对输入的文本数据进行编码,生成具有语义意义的高维向量。这个过程不仅仅是简
- 破解数据模型相似度计算难题:为数据应用清障
秉寒
大数据
引言在数字化浪潮下,数据仓库和数据湖已成为企业数据管理的核心基础设施。然而,随着它们在公司运营中服役时间的增长,一个棘手的问题逐渐浮现:相似的数据模型如雨后春笋般涌现,字段属性重复度常常高达80%以上。这不仅造成了数据冗余,还让用户在海量的数据模型中迷失方向,使用体验大打折扣。本文将提出一种计算数据模型相似度的方案,助力企业解决这一难题。问题剖析数据模型的相似性问题,本质上源于企业数据架构缺乏统一
- Python实现itemCF协同过滤推荐算法并计算召回率、准确率、F1分数和覆盖率
计算机软件程序设计
机器学习python推荐算法开发语言
一个完整的Python实现,包括ItemCF协同过滤算法的实现以及召回率、准确率、F1分数和覆盖率等评估指标的计算。将使用Pandas进行数据处理,Scikit-learn进行相似度计算,并编写函数来生成推荐列表和评估模型性能。1.数据准备首先,需要准备数据。假设有一个用户-物品评分矩阵(可以是显式评分或隐式反馈),表示用户对不同酒店的喜好程度。这里可以使用Pandas来处理数据。importpa
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- 图像检索简介
handsomestWei
AI图像处理人工智能
图像检索主要分为两类,一类是基于文本的图像检索(TextBasedImageRetrieval),另一类是基于内容的图像检索(ContentBasedImageRetrieval)基于文本通过对图像进行文本描述(对内容分析进行自动标注和人工标注),提炼关键词等标签信息。后续在进行检索时,可以通过检索关键词的方式查找对应的图片。基于内容以图搜图。涉及图像特征提取、相似度计算、特征数据库存储和搜索。图
- 基于用户的协同过滤以及ALS的混合召回算法
山水阳泉曲
算法机器学习人工智能矩阵python推荐算法线性代数
文章目录需求基于用户的协同过滤基本步骤相似度计算代码示例(使用余弦相似度)基于用户的协同过滤的缺点实际推荐系统中的替代方案ALSuserBaseCF+ALS混合推荐设计代码说明需求要将基于用户的协同过滤(User-BasedCollaborativeFiltering,UBCF)与交替最小二乘(AlternatingLeastSquares,ALS)结合起来,设计一个混合推荐系统。这种系统可以利用
- 向量数据库 Milvus:智能检索新时代
三余知行
「数智通识」「机器学习」数据库milvus智能检索高维数据检索AIGC维护
文章目录Milvus核心技术Milvus基本特点索引策略相似度计算图像检索演示Milvus基础维护环境搭建建立向量索引数据导入数据更新数据删除用户权限管理Milvus评估与调优性能评估调优技巧Milvus数据安全安全策略数据备份与恢复Milvus扩展性案例演示电影推荐在线广告投放结语随着人工智能和大数据技术的不断进步,向量数据库的应用场景愈发广泛。Milvus作为一款优秀的开源向量数据库,凭借其强
- 探秘Elasticsearch:高性能搜索引擎的原理与应用场景(一)
凛鼕将至
搜索引擎elasticsearch大数据
本系列文章简介:本系列文章将探秘Elasticsearch的原理与应用场景,从基本原理到具体应用,带领读者全面了解这一强大的搜索引擎。首先我们将介绍Elasticsearch的基本原理,包括分布式架构、倒排索引和分片等核心概念。然后我们将深入探讨Elasticsearch的搜索原理,包括查询解析、相似度计算和布尔搜索等关键技术。接着我们将讨论Elasticsearch的索引和映射,了解如何对文档进
- 人工智能学习与实训笔记(六):神经网络之智能推荐系统
穿越光年
人工智能技术学习人工智能学习笔记
人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客本篇目录七、智能推荐系统处理7.1常用的推荐系统算法7.2如何实现推荐7.3基于飞桨实现的电影推荐模型7.3.1电影数据类型7.3.2数据处理7.3.4数据读取器7.3.4网络构建7.3.4.1用户特征提取7.3.4.2电影特征提取7.3.4.3相似度计算7.3.4.4网络模型完整代码7.3根据推荐案例的思考七、智能推荐系统处理7.1常用
- hadoot离线与实时的电影推荐系统-计算机毕业设计源码10338
FYKJ_2010
mysqlajaxcssbootstrapvue.js
摘要随着互联网与移动互联网迅速普及,网络上的电影娱乐信息数量相当庞大,人们对获取感兴趣的电影娱乐信息的需求越来越大,个性化的离线与实时的电影推荐系统成为一个热门。然而电影信息的表示相当复杂,己有的相似度计算方法与推荐算法都各有优势,导致单一的相似度计算方法与推荐算法无法合适地应用于离线与实时的电影推荐系统中。大量的电影数据的管理运营随着数据量的增长也变得越来越复杂,因此,如何综合各种算法的优势给用
- 使用word2vec+tensorflow自然语言处理NLP
取名真难.
机器学习自然语言处理word2vectensorflow机器学习深度学习神经网络
目录介绍:搭建上下文或预测目标词来学习词向量建模1:建模2:预测:介绍:Word2Vec是一种用于将文本转换为向量表示的技术。它是由谷歌团队于2013年提出的一种神经网络模型。Word2Vec可以将单词表示为高维空间中的向量,使得具有相似含义的单词在向量空间中距离较近。这种向量表示可以用于各种自然语言处理任务,如语义相似度计算、文本分类和命名实体识别等。Word2Vec的核心思想是通过预测上下文或
- HNSW的基本原理及使用
查叔笔录
本文首发于:http://xzyin.top/hnsw/转载请注明出处:http://xzyin.top/相关系列文章可参考:《大规模向量相似度计算(一)——hnswlib的基本使用示例》《大规模向量相似度计算(二)——hnswlib的参数含义》关注微信公众号:【charlie_mouse】进入技术交流群。1.Smallworldvs.Randomgraph在正式的介绍NSW和HNSW之前,先来了
- LLM大语言模型(六):RAG模式下基于PostgreSQL pgvector插件实现vector向量相似性检索
Hugo Lei
LLM工程语言模型postgresql人工智能LLM向量数据库embedding
目录HightLightMac上安装PostgreSQLDBever图形界面管理端创建DB使用向量检索vector相似度计算近似近邻索引HNSW近似近邻索引示例HightLight使用PostgreSQL来存储和检索vector,在数据规模非庞大的情况下,简单高效。可以和在线业务共用一套DB,减少其他组件的引入,降低复杂度,在业务初期可以极大的提升效率。Mac上安装PostgreSQL强烈建议使用
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <bookjovi@gmail.com>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少