转载自弯曲评论 :)
【陈怀临注:原文可参阅sailing的http://blog.sina.com.cn/s/blog_6472c4cc0100lqr8.html 。写的实在是漂亮和精彩。信息量极大而且严谨。。。】
蝶变ARM
1929年开始的经济大萧条,改变了世界格局。前苏联的风景独好,使得相当多的人选择了。惧怕布尔什维克红色力量的人投入了法西斯的怀抱,剩余的人选择了妥协与折中。整个世界的迅速分解使得第二次世界大战成为必然。
1933年,罗斯福成为美国第三十二任总统,开始实施新政。这些新政使美国摆脱了危机,也决定了二战的走向。罗斯福的背后站着的是凯恩斯,凯恩斯的国家资本主义化解了整个资本主义阵营有史以来最大的一次危机。“妥协与折中”得以持续。
战后的世界是属于巨型公司的,这些公司借助国家资本的力量,持续着垄断。垄断的初衷并非都是恶意的,在美国却是一个早在1890年就立法防止的。1911年,美国烟草公司被分拆。1982年,美国电报电话公司被分拆。
这些分拆却很难抵达IT业。1975年成立的Microsoft虽然多次被推入拆分的风口浪尖,却从未被拆分。IBM和Intel多次遭到分拆的威胁,也安然无恙。这些公司的支持者都注意到一个事实,这些公司没有依靠国家资本而获得垄断地位,而是依靠多年苦心积攒的知识产权坚持到现在。
这类垄断之忧不在颛臾而在萧墙之内。在这些巨型IT公司中,最低层的工作人员需要经过多达十几级的汇报关系,才能到达首席执行官。在这十几级汇报链中,向上所传递最多的就是如何粉饰太平。
一些微不足道的小问题在这些大公司中往往也能引发无休止的讨论。为解决某个问题而举行的会议,经常被无休止地扩大,从一个会议扩展为多个会议,从几个人参与变为几十人参与。这个问题变得已不再重要时,内部并无统一意见。
西方巨型公司的弊端在于 欧美所倡导的民主代价过于昂贵。撒切尔夫人是欧洲第一个深刻认识到这些问题的最高执政官。历史上,英国并不重视中小企业的发展,在凯恩斯主义盛行的二十世 纪五十年代,英国经历了三次大规模的企业兼并,至撒切尔夫人执政,巨型企业大行其道。更多的人发现这些大型企业并不能提高生产效率,大范围的垄断与集中, 已使英国经济举步维艰。
上世纪八十年代,撒切尔夫人开始变革,剑锋所指,巨型公司纷纷解体,中小企业如雨后春笋般涌现。撒切尔的私有化,货币控制,削减福利与抑制工党的四项举措,客观上拯救了英国经济,也使这位值得尊敬的女士誉满天下,谤满天下。
ARM在这样的大背景之下诞生,这也注定了这些创始人不会也不愿意使ARM成为巨型公司,这也是取得如此成就的ARM,截至今天人数尚不过两千的最重要原因。ARM最初的简称是Acorn RISC Machine。Acorn Computer创立于1978年,总部位于剑桥,由Andy Hopper(剑桥大学), Chris Curry(Sinclair Research)和Herman Hauser(剑桥大学)创建[48]。
Acorn最初使用MOS Technology 6502处理器搭建处理器系统。MOS Technology 6502处理器是一个8位处理器,设计这颗处理器的工程师来自摩托罗拉的MC6800设计团队[48]。基于6502处理器,Acorn开发了最令其自豪的处理器系统BBC Micro[49]。
在上世纪80年代至90年代,BBC Micro处理器系统主宰英国的教育市场。当时还有另外一个基于6502处理器的系统,Apple II[50]。从这时起,Acorn和Apple这两个设计理念及产品形态类似的公司结下了不解之缘,有些人将Acorn公司称呼为“The British Apple”[51]。也是在这个时候,Acorn迎来了一生中的对手Intel。基于Intel x86构架的PC对同时代的处理器厂商是一场噩梦,很少有公司能够醒来。或者服从,或者消亡,别无选择。Acorn首先选择服从,向Intel申请80286处理器样片,Intel拒绝了这个请求[52]。
工程师对剩余的处理器,进行了充分的评估。结果令人失望。此时的Acorn没有选择,开始认真地考虑是否需要研制一颗属于自己的处理器。他们没有任何处理器设计经验,为数不多的工程师们除了才华,只有梦想。才华与梦想恰能改变整个世界。
1983年10月,Acorn启动了代号为Acorn RISC的项目,由VLSI Technology负责生产。1985年4月26日,VLSI成产出第一颗Acorn RISC处理器,ARM1。ARM1的结构非常简单,仅有个25,000晶体管,甚至没有乘法部件[52]。当时并没有人留意这颗芯片,更多的人关注Intel在1985年10月17日发布的80386处理器[36]。
没有人认为这颗略显寒酸的ARM1更给80386带来任何冲击,甚至包括研发这颗芯片的Acorn工程师。做为处理器厂商,与Intel活在同一个时代是一场悲剧,无论是Acorn,IBM亦或是不可一世的DEC。Intel并不是不犯错误,只是有限的几个错误都能被及时修复。才华横溢的Intel工程师将处理器的故事演绎至巅峰,他们的竞争对手也因此步入地狱。
Acorn不得不选择回避,这也决定了ARM处理器的设计理念是low-cost, low-power和high-performance。这个理念与21世纪智能手机的需求不谋而合,却是Intel强加给ARM的。Intel在不经意间为自己树立了一个强大的对手,这个对手在Intel的庇护之下一步步长大。并不夸张的说,没有Intel就没有ARM的今天。
因为对low-cost和low-power的追求,Acorn选择了RISC,而不是CISC,在上世纪80年代,RISC与CISC孰优孰劣尚无定论。在当时采用RISC技术可以看得到的优势是可以用更少的芯片资源,更少的开发人员实现一个性能相对较高的处理器芯片[53]。Intel使用了CISC架构,很大程度上也决定了Acorn选择了RISC。刘备的“每与操相反,事乃可成”,对于Acorn就是“与Intel不同,便有机会”。
ARM的成长步伐仍然是缓慢的,陆续发布的ARM2与ARM3并没有激起波澜。为数不多的公司选择ARM3处理器开发产品。一些公司将ARM3处理器用于研发,最有名的公司就是Apple[53]。在当时,Apple也是为数不多的对ARM友善的公司。
Acorn很快遭遇瓶颈,无论是在财务上还是在技术上。销售量达到150万台的BBC Micro并没有给Acorn带来足够多的财富,与席卷天下的PC相比微不足道[54]。ARM3与Intel在1989年发布的80486也没有太多可比性。危机最终降临到Acorn这个年轻的公司,1985年2月,当时的IT巨头Olivetti出资12M英镑收购Acorn 49.3%的股份[55]。Olivetti的庇护并没有给Acorn带来机遇。
Olivetti创建于上世纪初,对智慧与品质近于苛刻的执着使得他们的产品可以在纽约的现代艺术博物馆中陈列,出现在许多经典的影片中。这些产品并没有改变这个公司的最终命运。Olivetti最终涉足PC领域,使用Zilog的Z8000,去挑战在这个领域所向无敌的Intel。
Olivetti收购Acorn后,更多地将ARM处理器用于研发,而真正的产品使用Zilog系列。这段时间是Acorn最艰难的日子。Acorn的创始人Andy Hopper最终选择从Olivetti独立。出乎意料之外,Olivetti支持了Andy的决定。
1990年11月,Acorn(事实上是Olivetti Research Lab),Apple和VLSI共同出资创建了ARM。Acorn RISC Machine也正式更名为Advanced RISC Machine[55]。在1996年,Olivetti在其最困难的时候将所持有的14.7%的Acorn股份出售给了雷曼兄弟[56]。
Apple当时正在为代号为Newton的项目寻找低功耗处理器。Newton项目的终极目标是实现地球上第一个Tablet。Apple对Tablet的前景寄予厚望,他们直接将公司Logo上的Isaac Newton作为项目的名称。Apple最初的Logo是在苹果树和深思的牛顿。两个Steve[i]将公司命名为Apple,与喜欢吃苹果没有什么联系,是因为苹果而不是鸭梨砸到了牛顿头上。
Newton Tablet的想法过于超前,最糟糕的是Jobs当时并不在Apple。Apple用并不太短的时间证明了一条真理,没有Jobs的Apple和没有乔丹的公牛没有太大区别。1996年3月,Steve Jobs再次回到Apple,两年后取消了这个并不成功的项目[57]。等到Jobs再次推出iPad Newton,已是十几年之后的事情了[58]。
Apple投入3百万美金拥有了ARM公司43%的股份[60],但是并没有完全押宝在ARM公司,Apple真正关注的是在1991年与IBM和Motorola组建的AIM[59]。在1998年,ARM公司在英国和美国同时上市后,Apple逐渐卖出了这些股份。在2010年,Apple即便准备好了80亿美金,却也无法收购ARM。
1990年的ARM公司,财务依然十分拮据,12个员工只能挤在谷仓[ii]中办公,廉价License的商业模式更不被人看好。依靠Apple的鼎力相助,ARM6[iii]得以问世,却没有改变Apple和ARM的命运。Newton项目设计的是本应该属于下一个世纪的Tablet,ARM6被PC处理器和当时多如牛毛的RISC处理器笼罩,无所作为。
上世纪90年代属于PC领域。AMD的异军突起,及其与Intel的竞争,构建了上世纪九十年代处理器领域一道最炫目的风景线,而服务器领域属于DEC。1992年2月25日,DEC发布的Alpha21064处理器,主频达到150MHz[61],Intel在第二年发布的Pentium处理器,主频仅有66MHz[62]。
整个90年代,处理器世界都在惊叹着Alpha处理器所创造的奇迹。DEC陆续发布的Alpha系列处理器既是放到二十一世纪的今天,设计理念依然并不落后。DEC工程师就是在为二十一世纪设计处理器芯片。在Alpha21×64系列处理器的编号中,’21’代表二十一世纪,而’64’代表64位处理器[63]。
上帝并不青睐DEC公司,科技与商业的严重背离终于酿成了巨大的灾难。Alpha处理器的技术尚未抵达巅峰,DEC的财务已捉襟见肘。1994~1998年,DEC不断地向世界各地兜售资产。至1997年,DEC出售的资产已遍及五大洲,二十多个国家[64]。1998年1月26日,DEC正式被Compaq收购[65]。在DEC解体的最后一段日子里两个公司最为受益,一个是Intel,另一个就是ARM。
在ARM的起步阶段,鼎力相助的是Apple,最先License ARM内核的是英国本土的GEC半导体公司。在1993年因为Apple的引荐,ARM处理器跋山涉水来到日本,与Sharp建立了合作关系。在此之前Sharp与Apple一直在合作开发Newton项目。
这些合作并没有缓解ARM的财务危机,ARM一直在追寻真正属于自己的客户。1993年,Cirrus Logic[iv]和德州仪器公司TI(Texas Instruments)先后加入ARM阵营。TI给予了ARM雪中送炭的帮助。TI正在说服当时一家并不知名的芬兰公司Nokia与他们一道进入通信移动市场。TI在DSP领域已经取得了领袖地位,但并不熟悉CPU业务,在屈指可数的可以被操控的公司中,他们最终选择了ARM[67]。
ARM迎来了上天赐予的机会。通过与Nokia和TI的密切合作,ARM发明了16位的Thumb指令集,也真正意义上创建了基于ARM/Thumb的SoC商业模式[67]。ARM已经逐渐摆脱了财务危机,业务不断扩大。至1993年底,ARM已有50个员工,销售额达到10M英镑。
同年ARM迎来了公司成立以来最重要的一颗处理器内核,ARM7[67]。ARM7使用的Die尺寸是Intel 80486的十六分之一,售价仅为50美金[v]左右。较小的Die尺寸,使得ARM7处理器获得了较的功耗,适合手持式应用[67]。
ARM7处理器引起了当时的处理器巨头DEC的关注。1995年,DEC开始研发StrongARM。与其他License ARM内核的半导体厂商不同。DEC获得了ARM架构的完整授权,DEC可以使用ARM的指令集,设计新的处理器架构,这个特权后来被Intel和Marvell陆续继承。第二年的2月5日,DEC正式发布SA110处理器,并开始提供样片[68]。SA110处理器迅速得到了业界的认可,Apple正式使用SA110处理器开发MessagePAD 2000 [69]。
StrongARM处理器在设计中注入了Alpha处理器的一些元素。StrongARM使用5级顺序执行的流水线,分离了指令和数据Cache,添加了DMMU和IMMU功能部件,每个MMU中包含32个全互连结构的TLB,添加了16级深度的WB(Write Buffer)[70]。至此ARM处理器更像是一颗微处理器,而不再是微控制器。
DEC的帮助使ARM处理器达到了前所未有的高度。更为重要的是,这颗160MHz,DMIPS为185的处理器,功耗低于500mW[70]。这不仅引起了工业界的浓厚兴趣,学术界也开始真正关注ARM处理器。1997年,DEC如期发布了第二颗StrongARM芯片,SA1100。SA1100在SA110的基础上增加了一些外部设计。第二年Intel为SA1100提供了一个伴侣芯片SA1101,SA1100+SA1101也成为了许多PDA厂商的首选。1999年,Intel发布了最后一颗StrongARM处理器SA1110[vi],和对应的伴侣芯片SA1111。
StrongARM的发布并没有使DEC摆脱财务危机。而DEC却找到了一个更容易赚钱的途径。1997年5月,DEC正式起诉Intel,宣称Intel在设计Pentium,Pentium Pro和Pentium II处理器时侵犯了DEC的10条专利。1997年9月,Intel反诉DEC在设计Alpha系列处理器时侵犯了Intel多达14条专利[72]。
在IT界,这样的官司大多不了了之。1997年11月27日,DEC和Intel选择和解。DEC向Intel提供除Alpha处理器之外的所有硬件设计授权,并进一步支持Intel开发IA64处理器。而Intel花费了625M美金购买DEC在Hudson的工厂,Israel Jerusalem和Texas Austin的芯片设计中心。另外这两个公司还签署了长达十年的交叉授权协议[72]。
DEC的技术注入使Intel的x86处理器迈入新的时代,很快Intel具备了向所有RISC处理器同时宣战的能力,最终一统PC和服务器领域。此外Intel还从DEC获得了StrongARM。克雷格·贝瑞特认为这是上天赐予Intel的机会,x86处理器与StrongARM的组合,将使Intel的处理器遍及世界上任何需要处理器的领域。
为了迎接StrongARM的到来,贝瑞特放弃了Intel自己的RICS处理器,i860和i960。Intel为StrongARM起了一个炫目的名字XScale,动用了积蓄已久史上最为强大的Ecosystem,强势进军嵌入式领域。
一时间,XScale处理器遍及嵌入式应用的每一个领域,用于手持终端的PXA系列,用于消费类电子的IXC/Intel CE系列,用于存储的IOP系列,用于通信的IXP系列。Intel的处理器技术极大地促进了ARM内核的发展,借用PC帝国的Ecosystem使ARM处理器从生产到设计一步领先于所有嵌入式行业的竞争者。成为XScale处理器试金石的是摩托罗拉半导体的68K处理器。
在XScale系列处理器诞生之前,68K处理器主宰嵌入式领域,Apple Macintosh最初也使用68K处理器。在1997年,摩托罗拉销售了79M片68K处理器,而Intel的x86处理器一共卖出了75M片[73]。这是68K处理器最后的辉煌。Intel和TI主导的ARM处理器终结了68K处理器。摩托罗拉半导体面对ARM的强势出击毫无准备。ARM处理器不断地蚕食68K的市场份额,直到完全占有。
1995年,摩托罗拉半导体的香港设计中心发布第一颗用于手持式设备的DragonBall处理器,MC68328(EZ/VZ/SZ)[74],这是香港半导体界最好的时代。而StrongARM/XScale很快结束了香港设计中心的幸福生活。面对ARM的挑战,DragonBall最终屈服,DragonBall MX(Freescale i.MX)系列处理器开始使用ARM9。使用ARM内核并没有改变摩托罗拉香港设计中心的命运,这个设计中心最终不复存在。
在工业控制领域,68K内核进化为ColdFire[vii]。ColdFire在HP的中低端打印机中取得的成就几乎是最后的绝唱。在通信领域,摩托罗拉半导体抛弃了基于68K内核的MC68360,研发出基于PowerPC架构的MPC860处理器。这颗处理器是通信时代的经典之作,摩托罗拉半导体陆续推出了一系列基于PowerPC内核的通信处理器,却再也没有重现MPC860时代的君临天下。近期推出的QorIQ[viii]系列处理器面对多核MIPS处理器总是滞后一拍。
摩托罗拉半导体,昔日的王者优雅地没落。摩托罗拉半导体于1955年推出第一个锗晶体管,开创了半导体集成电路产业,在整个60年代一骑绝尘,70年代末迎来了68K的辉煌。即使在1985年,摩托罗拉还是全球第三大半导体公司。而怀抱通吃整个产业链的野心,对封闭式系统的挚爱,使摩托罗拉连同半导体部门在同一棵石头上跌到了一次又一次。至21世纪,摩托罗拉半导体(Freescale)的排名在十名左右,2009年的排名仅为第17位。
击败了摩托罗拉半导体的Intel没有感到一丝喜悦,更多的是寒气。2006年,Intel的业绩跌入低谷,这也使得当时的CEO贝瑞特作出了一个艰难的选择,2006年6月27日,Intel将PXA系列处理器出售给了Marvell[12]。
Intel虽然保留了ARM处理器的授权,事实上却已彻底退出了ARM阵营。这是Intel一个非常谨慎而且坚决的选择。Intel需要扑灭后院的熊熊烈火。在PC领域,AMD率先推出了64位的K8处理器[75],并在2005的Computex 上,发布双核处理器Athlon 64。Intel x86最引以为豪的性能优势已不复存在。
这段时间Intel只能依靠工艺与强大的商务能力与AMD的Athlon64处理器周旋。2008年11月,Intel正式发布基于Nehalem内核,用于台式机的Core i7处理器[76],用于服务器的Xeon处理器,Core i3/i5也如期而至。Nehalem内核使Intel彻底战胜了AMD。这颗处理器也是Intel开始研发x86处理器以来,第三个具有里程碑意义的产品,之前的两个里程碑分别是80386和Pentium Pro。从这时起AMD处理器在性能上再也没有超过Intel。Intel解决了最大的隐患后,却发现ARM处理器已非吴下阿蒙。
ARM7之后,ARM8内核于1996年发布。ARM8内核生不逢时。与ARM7相比,AMR8在没有显著提高功耗的前提下,性能提高了一倍,依然无法和DEC的StrongARM抗衡[77][78]。仅有少量手机在原型设计中考虑过使用ARM8内核,ARM也仅为用户提供了CPU样板。
ARM8的失败并没有阻碍ARM内核的进一步发展,与StrongARM的竞争没有消减ARM阵营的实力,反而激发了ARM处理器不断向前的动力。1997年ARM9正式发布,DMIPS指标首次超过了1.0大关。ARM9是一个重要的里程碑产品。这个产品标志着ARM处理器正式进入微处理器领域,而不再是简单的微控制器。
ARM9将ARM7的3级指令流水线提高到5级,与StrongARM使用的流水线结构较为相似。进一步细化的流水线使得ARM9最高的时钟频率达到220MHz,而ARM8仅为72MHz[78]。ARM9进一步优化了Load和Store指令的效率,ARM9不再使用普林斯顿结构,而转向哈佛结构,使用了独立的指令与数据Cache。
ARM9的指令执行部件分离了Memory和Write Back阶段,这两个阶段分别用于访问存储器和将结果回写到寄存器。这些技术的应用使得ARM9可以在一个周期内完成Load和Store指令,而在ARM7中,Load指令需要使用3拍,而Store指令需要使用2拍。
此外ARM9可以通过增强的编译器调整指令顺序来解决RAW(Read-after-Write)[ix]类相关。ARM9的这些功能增强,使得在相同的工艺下,其执行性能是ARM7的一倍左右[79]。ARM7并没有被淘汰,简练的设计极大降低了功耗,Apple在2001年10月23日[80]发布的iPod依然使用了ARM7处理器[81]。
ARM7与ARM9的合理布局,使得ARM阵营迅猛发展。基于ARM7和ARM9内核的SoC处理器迅速遍及世界的每一个角落。ARM内核依然在前进。1998年的EPF(Embedded Processor Forum) ARM10内核正式推出。2000年4月12日,Lucent发布了第一颗基于ARM10的处理器芯片[83]。
ARM10内核的设计目标依然是在相同的工艺下,双倍提升ARM9的性能。而提高性能的第一步是提高指令流水线的时钟频率,而流水线中最慢的逻辑单元决定了时钟频率。ARM1