欧几里得距离

欧几里得距离定义: 欧几里得距离( Euclidean distance)也称欧式距离,它是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。

  在二维和三维空间中的欧式距离的就是两点之间的距离,二维的公式是

  d = sqrt((x1-x2)^+(y1-y2)^)

  三维的公式是

  d=sqrt((x1-x2)^+(y1-y2)^+(z1-z2)^)

  推广到n维空间,欧式距离的公式是

  d=sqrt( ∑(xi1-xi2)^ ) 这里i=1,2..n

  xi1表示第一个点的第i维坐标,xi2表示第二个点的第i维坐标

  n维欧氏空间是一个点集,它的每个点可以表示为(x(1),x(2),...x(n)),其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上面的公式.

  欧氏距离看作信号的相似程度。 距离越近就越相似,就越容易相互干扰,误码率就越高。

  所谓欧氏距离变换,是指对于一张二值图像(再次我们假定白色为前景色,黑色为背景色),将前景中的像素的值转化为该点到达最近的背景点的距离。

  欧氏距离变换在数字图像处理中的应用范围很广泛,尤其对于图像的骨架提取,是一个很好的参照。

  所谓欧氏距离变换,是指对于一张二值图像(再次我们假定白色为前景色,黑色为背景色),将前景中的像素的值转化为该点到达最近的背景点的距离。

  欧氏距离变换在数字图像处理中的应用范围很广泛,尤其对于图像的骨架提取,是一个很好的参照。

  ========

  欧氏距离:(∑(Xi-Yi)2)1/2,即两项间的差是每个变量值差的平方和再平方根,目的是计算其间的整体距离即不相似性。

你可能感兴趣的:(欧几里得距离)