图论—深度优先和广度优先算法源码

近由于项目需要,需要实现深度优先和广度优先算法,图论中的基础内容,源代码共享一下,希望对大家有用:
public class Graph {   
    private final int MAX_VERT=500;   
    private Node nodelist[];   
    private int adjMat[][];   
    private int nverts;   
    private Stack theStack;   
    private Queue theQuene;   
       
    public Graph(){   
        //顶点数组   
        nodelist=new Node[MAX_VERT];   
        //邻接矩阵   
        adjMat = new int[MAX_VERT][MAX_VERT];   
        nverts=0;   
        for(int i=0;i<MAX_VERT;i++){   
            for(int j=0;j<MAX_VERT;j++){   
                adjMat[i][j]=0;   
            }   
        }   
        theStack=new Stack();   
        theQuene=new LinkedList();   
        sortedArray = new BusSiteBean[MAX_VERT];   
    }   
       
    /**  
     * 增加一定点  
     * @param node  
     */  
    public void addNode(Node node){   
        nodelist[nverts++]=node;   
    }   
       
    /**  
     * 增加一边  
     * @param start  
     * @param end  
     */  
    public void addEdge(int start,int end){   
        adjMat[start][end]=1;   
        //有向图   
        //adjMat[end][start]=1;   
    }   
       
    public int getAdjUnVisited(int v){   
        for(int j=0;j<nverts;j++){   
            if(adjMat[v][j]==1&&nodelist[j].isWasVisited()==false){   
                return j;   
            }   
        }   
        return -1;   
    }   
       
    /**  
     * 深度优先搜索算法  
     */  
    public void dfs(){   
        nodelist[0].setWasVisited(true);   
        displayNode(0);   
        theStack.push(0);   
        while(!theStack.isEmpty()){   
            int v=((Integer)theStack.peek()).intValue();   
            v=getAdjUnVisited(v);   
               
            if(v==-1){   
                theStack.pop();   
            }else{   
                nodelist[v].setWasVisited(true);   
                displayNode(v);   
                theStack.push(v);   
            }   
        }   
        for(int j=0;j<nverts;j++){   
            nodelist[j].setWasVisited(false);   
        }   
    }   
       
    /**  
     * 广度优先搜索算法  
     */  
    public void bfs(){   
        this.nodelist[0].setWasVisited(true);   
        this.displayNode(0);   
        this.theQuene.add(0);   
        int v2;   
        while(!this.theQuene.isEmpty()){   
            int v1=((Integer)this.theQuene.remove()).intValue();   
            while((v2=this.getAdjUnVisited(v1))!=-1){   
                this.nodelist[v2].setWasVisited(true);   
                displayNode(v2);   
                this.theQuene.add(v2);   
            }   
        }   
        for(int j=0;j<nverts;j++){   
            nodelist[j].setWasVisited(false);   
        }          
    }   
       
    private int noSuccessors(){   
        boolean isEdge;   
        for(int row=0;row<this.nverts;row++){   
            isEdge=false;   
            for(int col=0;col<this.nverts;col++){   
                if(adjMat[row][col]>0){   
                    isEdge=true;   
                    break;   
                }   
            }   
            if(!isEdge)   
                return row;   
        }   
        return -1;   
    }   
       
    /**  
     * 有向图拓扑  
     */  
    public void poto(){   
        int orig_nverts=this.nverts;   
        while(this.nverts>0){   
            int currentNode=noSuccessors();   
            if(currentNode==-1){   
                System.out.println("Graph 有环");   
                return;   
            }   
            sortedArray[this.nverts-1]=nodelist[currentNode].getBs();   
            deleteNode(currentNode);   
        }   
        for(int j=0;j<orig_nverts;j++){   
            System.out.print(sortedArray[j]);   
        }   
    }   
       
    private void deleteNode(int delVert){   
        if(delVert!=this.nverts-1){   
            for(int j=delVert;j<this.nverts-1;j++)   
                this.nodelist[j]=this.nodelist[j+1];   
            for(int row=delVert;row<this.nverts-1;row++)   
                moveRowUp(row,this.nverts);   
            for(int col=delVert;col<this.nverts-1;col++)   
                moveRowLeft(col,this.nverts-1);   
        }   
        this.nverts--;         
    }   
    private void moveRowUp(int row,int length){   
        for(int col=0;col<length;col++)   
            adjMat[row][col]=adjMat[row+1][col];   
    }   
       
    private void moveRowLeft(int col,int length){   
        for(int row=0;row<length;row++)   
            adjMat[row][col]=adjMat[row][col+1];       
    }   
  
    public void displayNode(int v){   
        System.out.println(nodelist[v].getBs().toString());   
    }   
       
    public static void main(String[] args) {   
        Graph g=new Graph();   
        g.addNode(new Node(new BusSiteBean("A")));   
        g.addNode(new Node(new BusSiteBean("B")));   
        g.addNode(new Node(new BusSiteBean("C")));   
        g.addNode(new Node(new BusSiteBean("D")));   
        g.addNode(new Node(new BusSiteBean("E")));   
        g.addNode(new Node(new BusSiteBean("F")));   
        g.addNode(new Node(new BusSiteBean("G")));   
        g.addNode(new Node(new BusSiteBean("H")));   
           
        g.addEdge(0, 3);   
        g.addEdge(0, 4);   
        g.addEdge(1, 4);   
        g.addEdge(2, 5);   
        g.addEdge(3, 6);   
        g.addEdge(4, 6);   
        g.addEdge(5, 7);   
        g.addEdge(6, 7);   
           
        g.poto();   
    }   
}  

http://blog.csdn.net/java2000_net/archive/2008/05/01/2357485.aspx

你可能感兴趣的:(算法,.net,Blog,F#,J#)