weka的StringToWordVector类可以将给定的文档格式的内容转换为vms模型的内容,而后者是文本分类必须的模块。按照weka要求,生成arff格式的文本:
@relation D__java_weka_data @attribute text string @attribute class {test1,test2,test3} @data 'here we go go go go to do ',test1 'Mostly, I expect we are interested in indexing XPath queries',test1 'so what do you think you can do anything?',test2 'Sparse ARFF files are very similar to ARFF files',test3
按照StringToWordVector类的命令格式,设定options:
String[] options = { "-C", "-T", "-i", "data//train.arff", "-o","data//res_train.arff", "-c", "last"};
生成结果如下:
@relation 'D_java_weka_data-weka.filters.unsupervised.attribute.StringToWordVector-R1-W1000-prune-rate-1.0-C-T-N0-stemmerweka.core.stemmers.NullStemmer-M1-tokenizerweka.core.tokenizers.WordTokenizer -delimiters \" \\r\\n\\t.,;:\\\'\\\"()?!\"' @attribute class {test1,test2,test3} @attribute I numeric @attribute Mostly numeric @attribute XPath numeric @attribute are numeric @attribute do numeric @attribute expect numeric @attribute go numeric @attribute here numeric @attribute in numeric @attribute indexing numeric @attribute interested numeric @attribute queries numeric @attribute to numeric @attribute we numeric @attribute anything numeric @attribute can numeric @attribute so numeric @attribute think numeric @attribute what numeric @attribute you numeric @attribute ARFF numeric @attribute Sparse numeric @attribute files numeric @attribute similar numeric @attribute very numeric @data {5 0.693147,7 1.609438,8 0.693147,13 0.693147,14 0.693147} {1 0.693147,2 0.693147,3 0.693147,4 0.693147,6 0.693147,9 0.693147,10 0.693147,11 0.693147,12 0.693147,14 0.693147} {0 test2,5 1.098612,15 0.693147,16 0.693147,17 0.693147,18 0.693147,19 0.693147,20 1.098612} {0 test3,4 0.693147,13 0.693147,21 1.098612,22 0.693147,23 1.098612,24 0.693147,25 0.693147}
可以发现在dataset中attribute-class中少了test1的label。
StringToWordVector类在转化过程中经历了如下的步骤:首先将文档中attribute为string的属性,按给定的tokenizer 分词,并生成m_dictionary,可以按照数字 look up word,为了保证最后attribute value的形式统一,对于attribute非string的属性,其值在设定的时候为test1:attribute value = 0; test2: attribute value = 1; test3: attribute value = 2。在转化完成之后,新生成的instance传入SparseInstance,剔除掉value = 0的元素。所以test1的属性段就被剔除了。
究其根本,还是instance 类在设计的时候没考虑好attribute为class的时候,在以后sparse会将其value=0的剔除.
Bug修补方法:
重写SparseInstance方法,指定attribute.value(0)的字段不做sparse,当然这只是暂时的策略,最根本的还是要修改instance类中attribute value的赋值方法,但由于instance类是Weka中核心类,改起来牵扯的地方太多,还是这个方便点。