DROP TABLE T1 PURGE; DROP TABLE T2 PURGE; CREATE TABLE T1 ( ID NUMBER NOT NULL, N NUMBER, CONTENTS VARCHAR2(4000) ); CREATE TABLE T2 ( ID NUMBER NOT NULL, T1_ID NUMBER NOT NULL, N NUMBER, CONTENTS VARCHAR2(4000) ); EXECUTE DBMS_RANDOM.SEED(0); INSERT INTO T1 SELECT ROWNUM,ROWNUM,DBMS_RANDOM.STRING('A',50) FROM DUAL CONNECT BY LEVEL <= 100 ORDER BY DBMS_RANDOM.RANDOM; INSERT INTO T2 SELECT ROWNUM,ROWNUM,ROWNUM,DBMS_RANDOM.STRING('B',50) FROM DUAL CONNECT BY LEVEL <= 100000 ORDER BY DBMS_RANDOM.RANDOM; admin@ORCL> SELECT COUNT(*) FROM T1; COUNT(*) ---------- 100 admin@ORCL> SELECT COUNT(*) FROM T2; COUNT(*) ---------- 100000 admin@ORCL> SELECT /*+LEADING(T1) USE_NL(T2)*/* 2 FROM T1,T2 3 WHERE T1.ID = T2.T1_ID --STARTS指的表访问次数,E-ROWS指的每个操作估算返回行数,A-ROWS指每步操作真实返回行数 --Leading 表示强制先访问T1表,也就是把T1作为驱动表 --执行之前需要set serveroutput off --要显示比较详细的执行计划,两种方式: --1.alter session set statistics=ALL --2.执行的语句需要加上/*+ gather_plan_statistics */ admin@ORCL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(NULL,NULL,'ALLSTATS LAST')); ------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------- | 1 | NESTED LOOPS | | 1 | 100 | 100 |00:00:00.81 | 100K| | 2 | TABLE ACCESS FULL| T1 | 1 | 100 | 100 |00:00:00.01 | 14 | |* 3 | TABLE ACCESS FULL| T2 | 100 | 1 | 100 |00:00:00.81 | 100K| ------------------------------------------------------------------------------------- --下面的结果可以看出 --在嵌套循环中,驱动表返回多少条记录,被驱动表就访问多少次 admin@ORCL> SELECT /*+LEADING(T1) USE_NL(T2)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID AND T1.N = 9999999; admin@ORCL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(NULL,NULL,'ALLSTATS LAST')); ------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------- | 1 | NESTED LOOPS | | 1 | 1 | 0 |00:00:00.01 | 7 | |* 2 | TABLE ACCESS FULL| T1 | 1 | 1 | 0 |00:00:00.01 | 7 | |* 3 | TABLE ACCESS FULL| T2 | 0 | 1 | 0 |00:00:00.01 | 0 | ------------------------------------------------------------------------------------- --来测试下,hash join的执行计划 --得出结论,在Hash连接中,驱动表与被驱动表都只会访问0次或1次 SELECT /*+LEADING(T1) USE_HASH(T2)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID; admin@ORCL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(NULL,NULL,'ALLSTATS LAST')); ---------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ---------------------------------------------------------------------------------------------------------------- |* 1 | HASH JOIN | | 1 | 100 | 100 |00:00:00.06 | 1019 | 741K| 741K| 1134K (0)| | 2 | TABLE ACCESS FULL| T1 | 1 | 100 | 100 |00:00:00.01 | 7 | | | | | 3 | TABLE ACCESS FULL| T2 | 1 | 100K| 100K|00:00:00.01 | 1012 | | | | ---------------------------------------------------------------------------------------------------------------- --查看排序合并的表访问次数 --T1,T2表只会访问0次或1次 --另外一个重要的概念:排序合并连接根本没有驱动表的概念,而嵌套循环和哈希连接要考虑驱动和被驱动的情况 SELECT /*+ ORDERED USE_MERGE(T2) */* FROM T1,T2 WHERE T1.ID = T2.T1_ID; admin@ORCL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(NULL,NULL,'ALLSTATS LAST')); ----------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ----------------------------------------------------------------------------------------------------------------- | 1 | MERGE JOIN | | 1 | 100 | 100 |00:00:00.08 | 1012 | | | | | 2 | SORT JOIN | | 1 | 100 | 100 |00:00:00.01 | 7 | 9216 | 9216 | 8192 (0)| | 3 | TABLE ACCESS FULL| T1 | 1 | 100 | 100 |00:00:00.01 | 7 | | | | |* 4 | SORT JOIN | | 100 | 100K| 100 |00:00:00.08 | 1005 | 9124K| 1177K| 8110K (0)| | 5 | TABLE ACCESS FULL| T2 | 1 | 100K| 100K|00:00:00.01 | 1005 | | | | ----------------------------------------------------------------------------------------------------------------- 已选择22行。 --对比下,驱动表选择的性能比较 --T1在前时产生了100K的逻辑读,而t2在前时产生了700K的逻辑读 --证明了嵌套循环需要特别注意驱动表顺序,小的结果集先访问,大的结果集后访问。 SELECT /*+LEADING(T1) USE_NL(T2)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID ------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------- | 1 | NESTED LOOPS | | 1 | 100 | 100 |00:00:00.80 | 100K| | 2 | TABLE ACCESS FULL| T1 | 1 | 100 | 100 |00:00:00.01 | 14 | |* 3 | TABLE ACCESS FULL| T2 | 100 | 1 | 100 |00:00:00.80 | 100K| ------------------------------------------------------------------------------------- SELECT /*+LEADING(T2) USE_NL(T1)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID ------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------- | 1 | NESTED LOOPS | | 1 | 100 | 100 |00:00:01.43 | 701K| | 2 | TABLE ACCESS FULL| T2 | 1 | 100K| 100K|00:00:00.01 | 1012 | |* 3 | TABLE ACCESS FULL| T1 | 100K| 1 | 100 |00:00:01.37 | 700K| ------------------------------------------------------------------------------------- --加上过滤条件后,看下执行计划. --发现T2的 TABLE ACCESS FULL步骤的逻辑读从700k减少到1006,这也说明了T2的全表访问实际上是依据T1的返回记录数去访问T2表 SELECT /*+LEADING(T1) USE_NL(T2)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID AND T1.n = 19; ------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------- | 1 | NESTED LOOPS | | 1 | 1 | 1 |00:00:00.02 | 1014 | |* 2 | TABLE ACCESS FULL| T1 | 1 | 1 | 1 |00:00:00.01 | 8 | |* 3 | TABLE ACCESS FULL| T2 | 1 | 1 | 1 |00:00:00.02 | 1006 | ------------------------------------------------------------------------------------- --对比下hash join的驱动表,执行效率 SELECT /*+LEADING(T1) USE_HASH(T2)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID ---------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ---------------------------------------------------------------------------------------------------------------- |* 1 | HASH JOIN | | 1 | 100 | 100 |00:00:00.06 | 1019 | 741K| 741K| 1133K (0)| | 2 | TABLE ACCESS FULL| T1 | 1 | 100 | 100 |00:00:00.01 | 7 | | | | | 3 | TABLE ACCESS FULL| T2 | 1 | 100K| 100K|00:00:00.01 | 1012 | | | | ---------------------------------------------------------------------------------------------------------------- SELECT /*+LEADING(T2) USE_HASH(T1)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID ---------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ---------------------------------------------------------------------------------------------------------------- |* 1 | HASH JOIN | | 1 | 100 | 100 |00:00:00.10 | 1019 | 9471K| 1956K| 10M (0)| | 2 | TABLE ACCESS FULL| T2 | 1 | 100K| 100K|00:00:00.01 | 1005 | | | | | 3 | TABLE ACCESS FULL| T1 | 1 | 100 | 100 |00:00:00.01 | 14 | | | | ---------------------------------------------------------------------------------------------------------------- --对比上面的没有过滤条件的hash join --逻辑读几乎一样,但排序使用的内存小了不少,而T1和T2的逻辑读都没有发生变化 --是否意味着T1,T2表时载入内存后,进行过滤后,然后进行排序? SELECT /*+LEADING(T1) USE_HASH(T2)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID AND T1.N = 19; ---------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ---------------------------------------------------------------------------------------------------------------- |* 1 | HASH JOIN | | 1 | 1 | 1 |00:00:00.07 | 1013 | 741K| 741K| 289K (0)| |* 2 | TABLE ACCESS FULL| T1 | 1 | 1 | 1 |00:00:00.01 | 7 | | | | | 3 | TABLE ACCESS FULL| T2 | 1 | 100K| 100K|00:00:00.01 | 1006 | | | | ---------------------------------------------------------------------------------------------------------------- --排序合并的表驱动顺序 SELECT /*+LEADING(T1) USE_MERGE(T2)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID AND T1.N = 19; ----------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ----------------------------------------------------------------------------------------------------------------- | 1 | MERGE JOIN | | 1 | 1 | 1 |00:00:00.08 | 1012 | | | | | 2 | SORT JOIN | | 1 | 1 | 1 |00:00:00.01 | 7 | 2048 | 2048 | 2048 (0)| |* 3 | TABLE ACCESS FULL| T1 | 1 | 1 | 1 |00:00:00.01 | 7 | | | | |* 4 | SORT JOIN | | 1 | 100K| 1 |00:00:00.08 | 1005 | 9124K| 1177K| 8110K (0)| | 5 | TABLE ACCESS FULL| T2 | 1 | 100K| 100K|00:00:00.01 | 1005 | | | | ----------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("T1"."N"=19) 4 - access("T1"."ID"="T2"."T1_ID") filter("T1"."ID"="T2"."T1_ID") --对比上面的结果,消耗资源一摸一样,说明排序合并表驱动表是哪一个不影响 SELECT /*+LEADING(T2) USE_MERGE(T1)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID AND T1.N = 19; ----------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ----------------------------------------------------------------------------------------------------------------- | 1 | MERGE JOIN | | 1 | 1 | 1 |00:00:00.12 | 1012 | | | | | 2 | SORT JOIN | | 1 | 100K| 20 |00:00:00.11 | 1005 | 9124K| 1177K| 8110K (0)| | 3 | TABLE ACCESS FULL| T2 | 1 | 100K| 100K|00:00:00.01 | 1005 | | | | |* 4 | SORT JOIN | | 20 | 1 | 1 |00:00:00.01 | 7 | 2048 | 2048 | 2048 (0)| |* 5 | TABLE ACCESS FULL| T1 | 1 | 1 | 1 |00:00:00.01 | 7 | | | | ----------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 4 - access("T1"."ID"="T2"."T1_ID") filter("T1"."ID"="T2"."T1_ID") 5 - filter("T1"."N"=19) --去掉过滤条件,发现只是T1表的表访问逻辑读增加了,T1表的cost仍然一样 SELECT /*+LEADING(T1) USE_MERGE(T2)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID ----------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ----------------------------------------------------------------------------------------------------------------- | 1 | MERGE JOIN | | 1 | 100 | 100 |00:00:00.10 | 1012 | | | | | 2 | SORT JOIN | | 1 | 100 | 100 |00:00:00.01 | 7 | 9216 | 9216 | 8192 (0)| | 3 | TABLE ACCESS FULL| T1 | 1 | 100 | 100 |00:00:00.01 | 7 | | | | |* 4 | SORT JOIN | | 100 | 100K| 100 |00:00:00.10 | 1005 | 9124K| 1177K| 8110K (0)| | 5 | TABLE ACCESS FULL| T2 | 1 | 100K| 100K|00:00:00.01 | 1005 | | | | ----------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 4 - access("T1"."ID"="T2"."T1_ID") filter("T1"."ID"="T2"."T1_ID") --测试下,合并排序只取部分字段 --会发现表T2的内存排序大小从8110K降到了1621K。应该是由于查询中没有用到T2表的字段,只是连接时用到了T2.T1_ID --所以只缓存此字段即可 SELECT /*+LEADING(T1) USE_MERGE(T2)*/T1.ID FROM T1,T2 WHERE T1.ID = T2.T1_ID AND T1.N = 19; ----------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ----------------------------------------------------------------------------------------------------------------- | 1 | MERGE JOIN | | 1 | 1 | 1 |00:00:00.07 | 1012 | | | | | 2 | SORT JOIN | | 1 | 1 | 1 |00:00:00.01 | 7 | 2048 | 2048 | 2048 (0)| |* 3 | TABLE ACCESS FULL| T1 | 1 | 1 | 1 |00:00:00.01 | 7 | | | | |* 4 | SORT JOIN | | 1 | 100K| 1 |00:00:00.07 | 1005 | 1824K| 650K| 1621K (0)| | 5 | TABLE ACCESS FULL| T2 | 1 | 100K| 100K|00:00:00.01 | 1005 | | | | ----------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("T1"."N"=19) 4 - access("T1"."ID"="T2"."T1_ID") filter("T1"."ID"="T2"."T1_ID") --来测试下hash表,是不是同样的效果 --结果并不是这样,对于hash join,虽然减少了查询字段,但资源的消耗没有减少。这点有点费解 SELECT /*+LEADING(T1) USE_HASH(T2)*/T1.ID FROM T1,T2 WHERE T1.ID = T2.T1_ID ---------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ---------------------------------------------------------------------------------------------------------------- |* 1 | HASH JOIN | | 1 | 100 | 100 |00:00:00.07 | 1019 | 1066K| 1066K| 1149K (0)| | 2 | TABLE ACCESS FULL| T1 | 1 | 100 | 100 |00:00:00.01 | 7 | | | | | 3 | TABLE ACCESS FULL| T2 | 1 | 100K| 100K|00:00:00.01 | 1012 | | | | ---------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - access("T1"."ID"="T2"."T1_ID") --来看下hash join与排序合并连接的限制 --hash连接不支持不等值连接,不支持><连接方式,不支持like SELECT /*+LEADING(T1) USE_HASH(T2)*/T1.ID FROM T1,T2 WHERE T1.ID <> T2.T1_ID AND T1.N = 19; ------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------- | 1 | NESTED LOOPS | | 1 | 100K| 99999 |00:00:00.10 | 7613 | |* 2 | TABLE ACCESS FULL| T1 | 1 | 1 | 1 |00:00:00.01 | 8 | |* 3 | TABLE ACCESS FULL| T2 | 1 | 100K| 99999 |00:00:00.01 | 7605 | ------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 2 - filter("T1"."N"=19) 3 - filter("T1"."ID"<>"T2"."T1_ID") --排序合并连接不支持<>连接方式,也不支持like,但支持><之类的连接方式 SELECT /*+LEADING(T1) USE_MERGE(T2)*/* FROM T1,T2 WHERE T1.ID <> T2.T1_ID AND T1.N = 19; SELECT /*+LEADING(T1) USE_MERGE(T2)*/* FROM T1,T2 WHERE T1.ID <> T2.T1_ID AND T1.N = 19 ------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------- | 1 | NESTED LOOPS | | 1 | 100K| 99999 |00:00:00.10 | 7613 | |* 2 | TABLE ACCESS FULL| T1 | 1 | 1 | 1 |00:00:00.01 | 8 | |* 3 | TABLE ACCESS FULL| T2 | 1 | 100K| 99999 |00:00:00.01 | 7605 | ------------------------------------------------------------------------------------- --学习下如何优化表连接 --什么时候适合于NL /* 两表关联返回少量记录,最佳情况是驱动表仅仅返回1条或者少量几条,而被驱动表也仅仅匹配少量几条数据,这种情况即使T1表和 T2表奇大无比,也是非常迅速的。 调优方式:驱动表的限制条件上有索引 被驱动表的连接条件上所在的列也有索引 */ SELECT /*+LEADING(T1) USE_NL(T2)*/T1.ID FROM T1,T2 WHERE T1.ID = T2.T1_ID AND T1.n = 19; ------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------- | 1 | NESTED LOOPS | | 1 | 1 | 1 |00:00:00.02 | 1014 | |* 2 | TABLE ACCESS FULL| T1 | 1 | 1 | 1 |00:00:00.01 | 8 | |* 3 | TABLE ACCESS FULL| T2 | 1 | 1 | 1 |00:00:00.02 | 1006 | ------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 2 - filter("T1"."N"=19) 3 - filter("T1"."ID"="T2"."T1_ID") --创建索引后,返现访问T1表的效率略有提示,但整体效率仍没有太大提高。这是因为表T1只有100条数据 CREATE INDEX IDX_T1_N ON T1(N); SELECT /*+LEADING(T1) USE_NL(T2)*/T1.ID FROM T1,T2 WHERE T1.ID = T2.T1_ID AND T1.n = 19; --------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | --------------------------------------------------------------------------------------------------- | 1 | NESTED LOOPS | | 1 | 1 | 1 |00:00:00.01 | 1009 | | 2 | TABLE ACCESS BY INDEX ROWID| T1 | 1 | 1 | 1 |00:00:00.01 | 3 | |* 3 | INDEX RANGE SCAN | IDX_T1_N | 1 | 1 | 1 |00:00:00.01 | 2 | |* 4 | TABLE ACCESS FULL | T2 | 1 | 1 | 1 |00:00:00.01 | 1006 | --------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - access("T1"."N"=19) 4 - filter("T1"."ID"="T2"."T1_ID") --在T2表的连接字段上创建索引,执行效率高了很多 CREATE INDEX IDX_T2_ID ON T2(T1_ID); ------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | ------------------------------------------------------------------------------------------------------------- | 1 | NESTED LOOPS | | 1 | 1 | 1 |00:00:00.03 | 6 | 4 | | 2 | TABLE ACCESS BY INDEX ROWID| T1 | 1 | 1 | 1 |00:00:00.01 | 3 | 0 | |* 3 | INDEX RANGE SCAN | IDX_T1_N | 1 | 1 | 1 |00:00:00.01 | 2 | 0 | |* 4 | INDEX RANGE SCAN | IDX_T2_ID | 1 | 1 | 1 |00:00:00.03 | 3 | 4 | ------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - access("T1"."N"=19) 4 - access("T1"."ID"="T2"."T1_ID") --hash连接,排序合并连接 /* 对于HASH连接或者排序合并索引,可以考虑通过PGA参数的调整避免排序尺寸过大在磁盘上排序 HASH连接,需要在HASH_AREA_SIZE中完成 特别注意:连接条件的索引对它们是起不到传递的作用 但若限制条件上如果有合适的索引可以快速检索到少量数据,也是可以提升性能的。 因此hash 连接,可以理解为单表索引的设置技巧 对于排序合并连接与hash连接有点差别: 排序合并连接上的连接条件虽然没有检索作用,但却有消除排序的作用 另外Oracle对于排序合并连接有点缺陷,当两个表都有索引时,Oracle只能消除一张表的排 */ CREATE INDEX IDX_T1_ID ON T1(ID); DROP INDEX IDX_T1_N; DROP INDEX IDX_T1_ID SELECT /*+LEADING(T1) USE_MERGE(T2)*/* FROM T1,T2 WHERE T1.ID = T2.T1_ID; ------------------------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ------------------------------------------------------------------------------------------------------------------------------- | 1 | MERGE JOIN | | 1 | 1 | 1 |00:00:00.07 | 1009 | | | | |* 2 | TABLE ACCESS BY INDEX ROWID| T1 | 1 | 1 | 1 |00:00:00.01 | 4 | | | | | 3 | INDEX FULL SCAN | IDX_T1_ID | 1 | 100 | 100 |00:00:00.01 | 2 | | | | |* 4 | SORT JOIN | | 1 | 100K| 1 |00:00:00.07 | 1005 | 9124K| 1177K| 8110K (0)| | 5 | TABLE ACCESS FULL | T2 | 1 | 100K| 100K|00:00:00.01 | 1005 | | | | ------------------------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 2 - filter("T1"."N"=19) 4 - access("T1"."ID"="T2"."T1_ID") filter("T1"."ID"="T2"."T1_ID")