- Day17笔记-高阶函数
~在杰难逃~
Python笔记python开发语言pycharm数据分析
高阶函数【重点掌握】函数的本质:函数是一个变量,函数名是一个变量名,一个函数可以作为另一个函数的参数或返回值使用如果A函数作为B函数的参数,B函数调用完成之后,会得到一个结果,则B函数被称为高阶函数常用的高阶函数:map(),reduce(),filter(),sorted()1.map()map(func,iterable),返回值是一个iterator【容器,迭代器】func:函数iterab
- 浅谈MapReduce
Android路上的人
Hadoop分布式计算mapreduce分布式框架hadoop
从今天开始,本人将会开始对另一项技术的学习,就是当下炙手可热的Hadoop分布式就算技术。目前国内外的诸多公司因为业务发展的需要,都纷纷用了此平台。国内的比如BAT啦,国外的在这方面走的更加的前面,就不一一列举了。但是Hadoop作为Apache的一个开源项目,在下面有非常多的子项目,比如HDFS,HBase,Hive,Pig,等等,要先彻底学习整个Hadoop,仅仅凭借一个的力量,是远远不够的。
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- Numpy 学习
沐辰老爹
创建指定数值的数组a=np.full((3,5),np.pi)高级通用函数的特性#1.指定输出x=np.arange(10)y=np.empty(10)np.multiply(x,10,out=y)#2.聚合x=np.arange(10)x_sum=np.add.reduce(x)#类似的可用于logical_and等np.logical_and([condition1,condition2,co
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- Spark集群的三种模式
MelodyYN
#Sparksparkhadoopbigdata
文章目录1、Spark的由来1.1Hadoop的发展1.2MapReduce与Spark对比2、Spark内置模块3、Spark运行模式3.1Standalone模式部署配置历史服务器配置高可用运行模式3.2Yarn模式安装部署配置历史服务器运行模式4、WordCount案例1、Spark的由来定义:Hadoop主要解决,海量数据的存储和海量数据的分析计算。Spark是一种基于内存的快速、通用、可
- HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
- Hadoop windows intelij 跑 MR WordCount
piziyang12138
一、软件环境我使用的软件版本如下:IntellijIdea2017.1Maven3.3.9Hadoop分布式环境二、创建maven工程打开Idea,file->new->Project,左侧面板选择maven工程。(如果只跑MapReduce创建java工程即可,不用勾选Creatfromarchetype,如果想创建web工程或者使用骨架可以勾选)image.png设置GroupId和Artif
- Python convtools 展示:流行聚合
Nikita Almakov
python后端低代码
今天,我想演示一下convtools如何帮助你避免重复实施流行的聚合。将对象序列转换为字典,其中的值按和计算fromconvtoolsimportconversionascfunc=c.aggregate(c.ReduceFuncs.DictSum(c.item("a"),c.item("b"))).gen_converter()data=[{"a":1,"b":10},{"a":2,"b":11
- Koa2——洋葱模型,简单实现
三千数优一
javascript1024程序员节
classapp{middleware=[];//装载中间件use(middleware){this.middleware.push(middleware);}compose(callback){//把要被触发的上一层洋葱壳作为下一层洋葱壳的next入参传入。//reducer的返回值,也就是下一层的next为()=>fn(next)。constreducer=(next,fn)=>()=>fn(
- ArcGIS地图切片原理与算法
数智侠
GIS
ArcGIS地图切图系列之(一)切片原理解析点击打开链接ArcGIS地图切图系列之(二)JAVA实现点击打开链接ArcGIS地图切图系列之(三)MapReduce实现点击打开链接
- spark常见面试题
爱敲代码的小黑
spark大数据分布式
文章目录1.Spark的运行流程?2.Spark中的RDD机制理解吗?3.RDD的宽窄依赖4.DAG中为什么要划分Stage?5.Spark程序执行,有时候默认为什么会产生很多task,怎么修改默认task执行个数?6.RDD中reduceBykey与groupByKey哪个性能好,为什么?7.SparkMasterHA主从切换过程不会影响到集群已有作业的运行,为什么?8.SparkMaster使
- 如何使用Pytorch-Metric-Learning?
鱼儿也有烦恼
PyTorchpytorch
文章目录如何使用Pytorch-Metric-Learning?1.Pytorch-Metric-Learning库9个模块的功能1.1Sampler模块1.2Miner模块1.3Loss模块1.4Reducer模块1.5Distance模块1.6Regularizer模块1.7Trainer模块1.8Tester模块1.9Utils模块2.如何使用PyTorchMetricLearning库中的
- cs寄存器 x86 特权模式_我们一起学RISC-V——01-了解处理器和寄存器
黎贝卡
cs寄存器x86特权模式
本期内容如下:形象认识处理器RISC-V处理器面貌处理器都能做什么RISC-V核对外接口一、形象认识处理器1.1指令集分类处理器指令集分为两类,CISC(ComplexInstructionSetComputers,复杂指令集计算机)和RISC(ReducedInstructionSetComputers,精简指令集计算机)。CISC处理器,当以为美国Intel,AMD的X86处理器为代表,当然中
- 【【通信协议之MDIO读写的FPGA实现】】
ZxsLoves
FPGA学习fpga开发
通信协议之MDIO读写的FPGA实现介绍MAC与PHY之间的通信通过了MDIO的接口与PHY芯片的通信则通过MAC(MediaAccessControl)控制器来实现。MAC控制器与PHY芯片之间的通信通常包括两部分:1.数据传输接口:比如MII(MediaIndependentInterface)、RMII(ReducedMediaIndependentInterface)、GMII(Gigab
- 数据中台建设方案-基于大数据平台(下)
FRDATA1550333
大数据数据库架构数据库开发数据库
数据中台建设方案-基于大数据平台(下)1数据中台建设方案1.1总体建设方案1.2大数据集成平台1.3大数据计算平台1.3.1数据计算层建设计算层技术含量最高,最为活跃,发展也最为迅速。计算层主要实现各类数据的加工、处理和计算,为上层应用提供良好和充分的数据支持。大数据基础平台技术能力的高低,主要依赖于该层组件的发展。本建设方案满足甲方对于数据计算层建设的基本要求:利用了MapReduce、Spar
- MIT6.824 课程-MapReduce
余为民同志
6.824mapreduce分布式6.824
MapReduce:在大型集群上简化数据处理概要MapReduce是一种编程模型,它是一种用于处理和生成大型数据集的实现。用户通过指定一个用来处理键值对(Key/Value)的map函数来生成一个中间键值对集合。然后,再指定一个reduce函数,它用来合并所有的具有相同中间key的中间value。现实生活中有许多任务可以通过该模型进行表达,具体案例会在论文中展现出来。以这种函数式风格编写的程序能够
- java8 四大函数式接口 和 用于数据处理的 stream流 使用详解
不如敲代码
Javajavalambdastream函数式编程
文章目录Stream使用示例四大函数式接口Function功能型接口Consumer消费型接口Supplier提供型接口Predicate断言型接口常用apistream,parallelStream获取流式对象filter过滤sorted排序map映射,转换peek遍历执行某个操作reduce聚合,将数据流聚合成一个对象collect可变聚合,可以聚合成一个集合在之前一篇博客里面介绍了java8
- Hadoop之mapreduce -- WrodCount案例以及各种概念
lzhlizihang
hadoopmapreduce大数据
文章目录一、MapReduce的优缺点二、MapReduce案例--WordCount1、导包2、Mapper方法3、Partitioner方法(自定义分区器)4、reducer方法5、driver(main方法)6、Writable(手机流量统计案例的实体类)三、关于片和块1、什么是片,什么是块?2、mapreduce启动多少个MapTask任务?四、MapReduce的原理五、Shuffle过
- Yarn介绍 - 大数据框架
why do not
大数据hadoop
YARN的概述YARN是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序YARN是Hadoop2.x版本中的一个新特性。它的出现其实是为了解决第一代MapReduce编程框架的不足,提高集群环境下的资源利用率,这些资源包括内存,磁盘,网络,IO等。Hadoop2.X版本中重新设计的这个YARN集群
- 浅析大数据Hadoop之YARN架构
haotian1685
python数据清洗人工智能大数据大数据学习深度学习大数据大数据学习YARNhadoop
1.YARN本质上是资源管理系统。YARN提供了资源管理和资源调度等机制1.1原HadoopMapReduce框架对于业界的大数据存储及分布式处理系统来说,Hadoop是耳熟能详的卓越开源分布式文件存储及处理框架,对于Hadoop框架的介绍在此不再累述,读者可参考Hadoop官方简介。使用和学习过老Hadoop框架(0.20.0及之前版本)的同仁应该很熟悉如下的原MapReduce框架图:1.2H
- Hive的优势与使用场景
傲雪凌霜,松柏长青
后端大数据hivehadoop数据仓库
Hive的优势Hive作为一个构建在Hadoop上的数据仓库工具,具有许多优势,特别是在处理大规模数据分析任务时。以下是Hive的主要优势:1.与Hadoop生态系统的紧密集成Hive构建在Hadoop分布式文件系统(HDFS)之上,能够处理海量数据并进行分布式计算。它利用Hadoop的MapReduce或Spark来执行查询,具备高度扩展性,适合大数据处理。2.支持SQL-like查询语言(Hi
- python四种常用高阶函数
怿琴殇
pythonpython开发语言后端
1、什么是高阶函数把函数作为参数传入,这样的函数称为高阶函数例如·:deffunc1(x,y,f):returnf(x)+f(y)num=func1(-10,2,abs)print(num)注意:把函数作为参数传入的时候,不要再传入函数后面解括号,abs代表这个取绝对值,abs()表示调用这个函数,获取他的返回值2、常用高阶函数(map,filter,sorted,reduce)map映射函数一般
- python内置的四大高阶函数
挑灯望美人。
python开发语言
python内置的四大高阶函数为map,reduce,filter,sorted实现原理:map函数:接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素。如果传入了多个iterable参数,function必须接受相同个数的实参并被应用于从所有可迭代对象中并行获取的项。reduce函数:reduce方法,顾名思义就是减少,假设你有一个由数字组成的可迭代对象,并希望将其
- 【JavaScript】`forEach` 方法的详解与实战
Peter-Lu
#JavaScriptjavascript开发语言forEach
文章目录一、`forEach`方法的基本概念二、基本用法示例三、使用索引与数组参数四、使用`thisArg`参数五、常见应用场景六、与其他遍历方法的对比`forEach`vs`map``forEach`vs`filter``forEach`vs`reduce`七、注意事项和最佳实践八、实战示例在JavaScript中,forEach方法是数组对象的重要组成部分。它提供了一种简洁、优雅的方式来遍历数
- MapTask && ReduceTask 工作机制
tracy_668
image.png(1)Read阶段:MapTask通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。(2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。(3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.co
- Spark概念知识笔记
kuntoria
最近总结了个人的各项能力,发现在大数据这方面几乎没有涉及,因此想补充这方面的知识,丰富自己的知识体系,大数据生态主要包含:Hadoop和Spark两个部分,Spark作用相当于MapReduceMapReduce和Spark对比如下磁盘由于其物理特性现在,速度提升非常困难,远远跟不上CPU和内存的发展速度。近几十年来,内存的发展一直遵循摩尔定律,价格在下降,内存在增加。现在主流的服务器,几百GB或
- 【Hadoop】- MapReduce & YARN 初体验[9]
星星法术嗲人
hadoophadoopmapreduce
目录提交MapReduce程序至YARN运行1、提交wordcount示例程序1.1、先准备words.txt文件上传到hdfs,文件内容如下:1.2、在hdfs中创建两个文件夹,分别为/input、/output1.3、将创建好的words.txt文件上传到hdfs中/input1.4、提交MapReduce程序至YARN1.5、可通过node1:8088查看1.6、返回我们的服务器,检查输出文
- Hexagon_DSP_User_Guide(2)
weixin_38498942
tools简介dsp开发开发语言tool
Hexagon_DSP_User_Guide(2)4.2Guidelinesforassemblyandintrinsicoptimization4.2.1Maximizeinstructionsperpacket4.2.1.1Scalarinstructionpackingrules4.2.1.2HVXpackingrules4.2.2Understandandreducestalls4.2.2
- ES6中的reduce方法
肖肖冲鸭
ES6es6javascript大数据
可以用来做统计例:letnumbers=[1,2,3,4,5]//第二个值是初始值,n代表数组中的每一项,sum是计算之后的结果letresult1=numbers.reduce((sum,n)=>sum+n,0)console.log(result1);//15//letresult2=numbers.reduce((sum,n)=>sum*n)letresult2=numbers.reduce
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla