先来看下LruBlockCache的构造,关键是看清每个参数的作用:
/**
* Configurable constructor. Use this constructor if not using defaults.
* @param maxSize maximum size of this cache, in bytes
* @param blockSize expected average size of blocks, in bytes
* @param evictionThread whether to run evictions in a bg thread or not
* @param mapInitialSize initial size of backing ConcurrentHashMap
* @param mapLoadFactor initial load factor of backing ConcurrentHashMap
* @param mapConcurrencyLevel initial concurrency factor for backing CHM
* @param minFactor percentage of total size that eviction will evict until
* @param acceptableFactor percentage of total size that triggers eviction
* @param singleFactor percentage of total size for single -access blocks
* @param multiFactor percentage of total size for multiple -access blocks
* @param memoryFactor percentage of total size for in -memory blocks
*/
public LruBlockCache( long maxSize, long blockSize, boolean evictionThread,
int mapInitialSize, float mapLoadFactor, int mapConcurrencyLevel,
float minFactor , float acceptableFactor,
float singleFactor, float multiFactor, float memoryFactor) {
if(singleFactor + multiFactor + memoryFactor != 1) {
throw new IllegalArgumentException("Single, multi, and memory factors " +
" should total 1.0");
}
if(minFactor >= acceptableFactor) {
throw new IllegalArgumentException("minFactor must be smaller than acceptableFactor");
}
if(minFactor >= 1.0f || acceptableFactor >= 1.0f) {
throw new IllegalArgumentException("all factors must be < 1" );
}
this. maxSize = maxSize;
this. blockSize = blockSize;
map = new ConcurrentHashMap<String,CachedBlock>(mapInitialSize,
mapLoadFactor, mapConcurrencyLevel);
this. minFactor = minFactor;
this. acceptableFactor = acceptableFactor;
this. singleFactor = singleFactor;
this. multiFactor = multiFactor;
this. memoryFactor = memoryFactor;
this. stats = new CacheStats();
this. count = new AtomicLong(0);
this. elements = new AtomicLong(0);
this. overhead = calculateOverhead(maxSize, blockSize, mapConcurrencyLevel);
this. size = new AtomicLong(this.overhead);
if(evictionThread) {
this. evictionThread = new EvictionThread(this);
this. evictionThread.start(); // FindBugs SC_START_IN_CTOR
} else {
this. evictionThread = null ;
}
this. scheduleThreadPool.scheduleAtFixedRate(new StatisticsThread(this),
statThreadPeriod, statThreadPeriod , TimeUnit.SECONDS);
}
接下来我们还需要了解几个相关的类:
public class CachedBlock implements HeapSize, Comparable<CachedBlock >
这个类代表了LruBlockCache中的一个条目,它里面有个非常关键的枚举:
static enum BlockPriority {
/**
* Accessed a single time (used for scan -resistance)
*/
SINGLE,
/**
* Accessed multiple times
*/
MULTI,
/**
* Block from in -memory store
*/
MEMORY
};
通过以下代码可以更好的解释:
public CachedBlock(String blockName, ByteBuffer buf, long accessTime,
boolean inMemory ) {
this. blockName = blockName;
this.buf = buf;
this. accessTime = accessTime;
this. size = ClassSize. align(blockName.length()) +
ClassSize.align(buf.capacity()) + PER_BLOCK_OVERHEAD;
//第一次缓存一个block时,假设inMemory为false(默认),那么会把这个CachedBlock的BlockPriority 设置为SINGLE, 否则为MEMORY。
if(inMemory ) {
this. priority = BlockPriority. MEMORY;
} else {
this. priority = BlockPriority. SINGLE;
}
}
/**
* Block has been accessed. Update its local access time.
*/
public void access(long accessTime) {
this. accessTime = accessTime;
// 当再次访问到时,假如此时CacheedBlock的BlockPriority的值是SINGLE,则把它变为MULTI
if(this. priority == BlockPriority. SINGLE) {
this. priority = BlockPriority. MULTI;
}
}
另一方面,因为是LRU算法的实现,该类也实现了一个比较器:
public int compareTo(CachedBlock that) {
if(this. accessTime == that.accessTime ) return 0;
return this.accessTime < that.accessTime ? 1 : -1;
}
因为它实现了HeapSize这个接口,所以它能返回这个条目所占用的heap大小。
另一个关键的类是LruBlcokCache的内部类:
private class BlockBucket implements Comparable<BlockBucket >
这个类的作用是把所有的block分到不同的priority bucket中,每个BlockPriority都会有自己的一个bucket
我们可以开始看将一个新的block加入缓存:
public void cacheBlock(String blockName, ByteBuffer buf, boolean inMemory ) {
//private final ConcurrentHashMap<String,CachedBlock> map, 维护了缓存映射
CachedBlock cb = map.get(blockName);
//如果这个block已经被缓存了,那么就抛出一个运行时异常
if(cb != null) {
throw new RuntimeException("Cached an already cached block" );
}
//初始化一个新的CachedBlock
cb = new CachedBlock(blockName, buf, count.incrementAndGet(), inMemory);
//得到最新的heapsize
long newSize = size.addAndGet(cb.heapSize());
//将新增的block放到map中
map.put(blockName, cb);
//elements记录了目前缓存的数目
elements.incrementAndGet();
//假如最新的heapsize大于了acceptableSize(见下面的方法),那么就需要进行evict动作
if(newSize > acceptableSize() && ! evictionInProgress) {
runEviction();
}
}
//-----------------------------
//假如没有特定的清理线程,那么就使用目前的线程来进行evict,这显然不是一个好主意,会造成阻塞,假如有清理线程,那么调用其evict方法
private void runEviction() {
if(evictionThread == null) {
evict();
} else {
evictionThread.evict(); //事实上是触发了清理线程的notify
}
}
有必要来看一下这个清理线程,在初始化LruBlockCache的时候就已经将其启动:
private static class EvictionThread extends Thread {
private WeakReference<LruBlockCache> cache;
public EvictionThread(LruBlockCache cache) {
super( "LruBlockCache.EvictionThread" );
setDaemon( true);
this. cache = new WeakReference<LruBlockCache>(cache);
}
@Override
//这里使用了wait和notify机制,线程将一直等待,知道有notify消息过来说需要进行清理了
public void run() {
while( true) {
synchronized(this ) {
try {
this.wait();
} catch(InterruptedException e) {}
}
//这里cache使用了弱引用
LruBlockCache cache = this.cache .get();
if(cache == null) break;
cache.evict();
}
}
public void evict() {
synchronized( this) {
this.notify(); // FindBugs NN_NAKED_NOTIFY
}
}
}
看具体的evict方法:
void evict () {
// Ensure only one eviction at a time
if(!evictionLock.tryLock()) return;
try {
evictionInProgress = true;
long currentSize = this.size .get();
//需要释放掉的heap大小
long bytesToFree = currentSize - minSize();
if (LOG.isDebugEnabled()) {
LOG.debug("Block cache LRU eviction started; Attempting to free " +
StringUtils. byteDesc(bytesToFree) + " of total=" +
StringUtils. byteDesc(currentSize));
}
if(bytesToFree <= 0) return;
// Instantiate priority buckets
//初始化三个桶,来存放single,multi,和memory,比例分别为25%,50%,25%
BlockBucket bucketSingle = new BlockBucket(bytesToFree, blockSize ,
singleSize());
BlockBucket bucketMulti = new BlockBucket(bytesToFree, blockSize ,
multiSize());
BlockBucket bucketMemory = new BlockBucket(bytesToFree, blockSize ,
memorySize());
// Scan entire map putting into appropriate buckets
for(CachedBlock cachedBlock : map.values()) {
switch(cachedBlock.getPriority()) {
case SINGLE : {
bucketSingle.add(cachedBlock);
break;
}
case MULTI : {
bucketMulti.add(cachedBlock);
break;
}
case MEMORY : {
bucketMemory.add(cachedBlock);
break;
}
}
}
//接下来将三个桶放入PriorityQueue
PriorityQueue<BlockBucket> bucketQueue =
new PriorityQueue<BlockBucket>(3);
//会调用到CachedBlockQueue的add方法,下面分析
bucketQueue.add(bucketSingle);
bucketQueue.add(bucketMulti);
bucketQueue.add(bucketMemory);
int remainingBuckets = 3;
long bytesFreed = 0;
BlockBucket bucket;
//溢出的多的那个桶,会越先被清理, 参看BlockBucket的compareTo方法
//这里也说明,三个桶本身没有优先级
while((bucket = bucketQueue.poll()) != null) {
long overflow = bucket.overflow();
if(overflow > 0) {
// 本次要释放掉的内存
long bucketBytesToFree = Math.min(overflow, (bytesToFree - bytesFreed) / remainingBuckets);
//free方法在下面解释
bytesFreed += bucket.free(bucketBytesToFree);
}
remainingBuckets--;
}
if (LOG.isDebugEnabled()) {
long single = bucketSingle.totalSize();
long multi = bucketMulti.totalSize();
long memory = bucketMemory.totalSize();
LOG.debug("Block cache LRU eviction completed; " +
"freed=" + StringUtils.byteDesc(bytesFreed) + ", " +
"total=" + StringUtils.byteDesc( this.size .get()) + ", " +
"single=" + StringUtils.byteDesc(single) + ", " +
"multi=" + StringUtils.byteDesc(multi) + ", " +
"memory=" + StringUtils.byteDesc(memory));
}
} finally {
stats.evict();
evictionInProgress = false;
evictionLock.unlock();
}
}
public void add(CachedBlock cb) {
//如果当前的heapsize小于maxsize,直接加到queue中,这边的queue也是一个PriorityQueue
if(heapSize < maxSize) {
queue.add(cb);
heapSize += cb.heapSize();
} else {
// 否则先取出列表头
CachedBlock head = queue.peek();
//判断假如的cb是不是比head大,实际的意义就是看新加入的cb是不是比head新,参看CachedBlock的compareTo方法,假如新,则继续
if(cb.compareTo(head) > 0) {
heapSize += cb.heapSize();
heapSize -= head.heapSize();
if(heapSize > maxSize ) {
//取出head
queue.poll();
} else {
heapSize += head.heapSize();
}
queue.add(cb);
}
}
}
public long free(long toFree) {
//这边的queue是CacheBlockQueue类型,这个get方法很重要,它对PriorityQueue做了反序,这样的话就把时间最早的放在队列头
LinkedList<CachedBlock> blocks = queue.get();
long freedBytes = 0;
for(CachedBlock cb: blocks) {
freedBytes += evictBlock(cb);
if(freedBytes >= toFree) {
return freedBytes;
}
}
return freedBytes;
}
//最后调用这个方法将block从map中移除:
protected long evictBlock(CachedBlock block) {
map.remove(block.getName());
size.addAndGet(-1 * block.heapSize());
elements.decrementAndGet();
stats.evicted();
return block.heapSize();
}