希尔排序,也称递减增量排序算法,是插入排序的一种高速而稳定的改进版本。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
- 插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率
- 但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位
步长的选择是希尔排序的重要部分。只要最终步长为1任何步长序列都可以工作。算法最开始以一定的步长进行排序。然后会继续以一定步长进行排序,最终算法以步长为1进行排序。当步长为1时,算法变为插入排序,这就保证了数据一定会被排序。
一直较好的增量序列是2^k-1,2^(k-1)-1,.....7,3,1,这样可使Shell排序时间复杂度达到O(N^1.5)。
为了方便扩展,先引入一个抽象的基础类:
希尔(Shell)排序算法源码如下:
归并排序,是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。
也叫归并算法,指的是将两个已经排序的序列合并成一个序列的操作。归并排序算法依赖归并操作。
算法描述
归并操作的过程如下:
- 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
- 设定两个指针,最初位置分别为两个已经排序序列的起始位置
- 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
- 重复步骤3直到某一指针达到序列尾
- 将另一序列剩下的所有元素直接复制到合并序列尾
归并排序算法源码如下: