- 使用Faiss进行高效相似度搜索
llzwxh888
faisspython
在现代AI应用中,快速和高效的相似度搜索是至关重要的。Faiss(FacebookAISimilaritySearch)是一个专门用于快速相似度搜索和聚类的库,特别适用于高维向量。本文将介绍如何使用Faiss来进行相似度搜索,并结合Python代码演示其基本用法。什么是Faiss?Faiss是一个由FacebookAIResearch团队开发的开源库,主要用于高维向量的相似性搜索和聚类。Faiss
- Python(PyTorch)和MATLAB及Rust和C++结构相似度指数测量导图
亚图跨际
Python交叉知识算法量化检查图像压缩质量低分辨率多光谱峰值信噪比端到端优化图像压缩手术机器人三维实景实时可微分渲染重建三维可视化
要点量化检查图像压缩质量低分辨率多光谱和高分辨率图像实现超分辨率分析图像质量图像索引/多尺度结构相似度指数和光谱角映射器及视觉信息保真度多种指标峰值信噪比和结构相似度指数测量结构相似性图像分类PNG和JPEG图像相似性近似算法图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩手术机器人深度估计算法重建三维可视化推理图像超分辨率算法模型三维实景实时可微分渲染算法MATLAB结构
- K-means 算法的介绍与应用
小魏冬琅
matlab算法kmeans机器学习
目录引言K-means算法的基本原理表格总结:K-means算法的主要步骤K-means算法的MATLAB实现优化方法与改进K-means算法的应用领域表格总结:K-means算法的主要应用领域结论引言K-means算法是一种经典的基于距离的聚类算法,在数据挖掘、模式识别、图像处理等多个领域中得到了广泛应用。其核心思想是将相似的数据对象聚类到同一个簇中,而使得簇内对象的相似度最大、簇间的相似度最小
- OpenCV-模板匹配多个目标
红米煮粥
opencv人工智能计算机视觉
文章目录一、基本概念二、基本步骤1.图像准备2.图像预处理3.执行模板匹配4.定位匹配区域5.处理多个匹配6.优化和验证三、代码实现1.图片读取2.图像预处理3.模板匹配4.绘制矩形框三、总结模型匹配(ModelMatching)是一个广泛应用的概念,其具体含义和应用领域会根据上下文的不同而有所变化。一、基本概念模型匹配是指通过比较待匹配的数据或对象与已有的模型之间的相似度或距离,来寻找最佳匹配的
- 动态规划算法之最长公子序列详细解读(附带Java代码解读)
南城花随雪。
算法分析算法动态规划java
最长公共子序列(LongestCommonSubsequence,LCS)问题是动态规划中另一个经典问题,广泛用于比较两个序列的相似度。它的目标是找到两个序列之间最长的公共子序列(不是连续的),使得这个子序列同时出现在两个序列中。1.问题定义给定两个序列X和Y,要找到它们的最长公共子序列,即一个序列Z,它同时是X和Y的子序列,且Z的长度最大。例如:对于序列X="ABCBDAB"和Y="BDCAB"
- Springboot+vue.js+协同过滤推荐+余弦相似度算法实现新闻推荐系统
计算机程序优异哥
针对海量的新闻资讯数据,如何快速的根据用户的检索需要,完成符合用户阅读需求的新闻资讯推荐?本篇文章主要采用余弦相似度及基于用户协同过滤算法实现新闻推荐,通过余弦相似度算法完成针对不同新闻数据之间的相似性计算,实现分类标签。通过协同过滤算法发现具备相似阅读习惯的用户,展开个性化推荐。本次新闻推荐系统:主要包含技术:springboot,mybatis,mysql,javascript,vue.js,
- 高仿手表值不值得购买?什么样的高仿手表比较好呢
美表之家
高仿手表是指外观、材质、工艺等方面与原版手表相似度达到较高水平的手表产品。对于手表爱好者来说,高仿手表在一定程度上可以满足他们对名牌手表的追求,而价格相对原版手表则更加亲民。然而,值不值得购买高仿手表这个问题,没有一个绝对的答案,主要取决于个人的需求和态度。微信:fk2018988(下单赠送精美礼品)第一、高仿手表值不值得购买?高仿手表值得购买,在手表市场我们发现高仿手表销量还是非常不错,高仿手表
- c++原型模式
程序员小吕666
#设计模式c++
c++原型模式简介特点缺陷代码使用场景简介UMl特点可以在程序运行时(对象属性发生了变化),得到一份内容相同的实例,但之间还不会相互干扰。缺陷使用场景跟拷贝构造相似度很高,能用拷贝构造(注意考虑深浅拷贝)解决不用非得搞设计模式。注意但是使用了原型模式就是不想暴露给用户对象创建过程。只能通过clone来获取对象的拷贝。和工厂模式可以搭配,隐藏对象的创建细节。代码#include#includeusi
- 《华为数据之道》总结
Walter_Silva
数据中台数据仓库数据中台
华为官方关于数字化转型的书,去年读了《华为数据之道》,今年读了本《华为数字化转型》,华为2016年开始启动的数字化转型所做的工作和目前公司做的相似度蛮高,都是非数字原生企业,华为走得更早更快更专业,就想着做个小小的总结,以借此总结下过去几年的部分工作。第一篇就从数据之道开始,这一篇会比较贴近书本,偶尔穿插些实际工作里的一些例子。目录目录一、华为数据工作建设的整体框架1.1、数据源1.2、数据入湖1
- Spark入门:KMeans聚类算法
17111_Chaochao1984a
算法sparkkmeans
聚类(Clustering)是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(UnsupervisedLearning)方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
- 项目实战 ---- 商用落地视频搜索系统(3) --- 数据综合查询设计与实现
PhoenixAI8
AI落地项目设计与实现音视频数据库vectordbmilvuspython
目录背景商用视频搜索算法设计设计理念搜索策略详细设计源码完整代码代码解读背景向量数据库发展到现在,已经支持了类似hybridsearch的功能。但是必须要指出为了应对商用化大型系统向量查询,如果仅使用hybridsearch,无法从用户功能满足你的功能要求。比如在定义视频相似度时,如何衡量多个视频之间的相似度?如何能通过语义拆分及内容,对视频进行综合排序?如何找到相似视频的关键位置等都是searc
- [论文笔记]Circle Loss: A Unified Perspective of Pair Similarity Optimization
愤怒的可乐
#文本匹配[论文]论文翻译/笔记自然语言处理论文阅读人工智能
引言为了理解CoSENT的loss,今天来读一下CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization。为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。这篇论文从对深度特征学习的成对相似度优化角度出发,旨在最大化同类之间的相似度sps_ps
- 简单聊聊高仿名表一般什么价
广州潮品汇
随着经济的发展和人们对品质生活的追求,名牌手表成为了许多人的时尚配饰之一。然而,正版名表价格昂贵,使得很多普通消费者望而却步。因此,高仿名表逐渐成为了一个备受关注的话题。微信:52226813(下单赠送精美礼品)高仿名表是指外观和功能上都与原版名表相似度极高的复制品。它们使用的材料、工艺与正版名表非常接近,甚至有些高仿名表在细节上更加精细。这种高仿表的出现,既满足了追求名表的愿望,又降低了价格,因
- 简单聊聊劳力士复刻表哪个厂的最好
广州潮品汇
劳力士复刻表是全球著名的钟表品牌,以其精湛的工艺和可靠的质量而闻名。在众多劳力士复刻表厂商中,有三个厂家被公认为最好的,它们分别是C厂、VS厂和N厂。下面将详细介绍这三个厂家以及它们的优点。微信:52226813(下单赠送精美礼品)第一个是C厂。C厂以其高度精细的复制表技术而闻名。它采用了最先进的机械设备和制表工艺,以确保每一块复刻表的质量和精准度。C厂的复刻表与原版劳力士表几乎完美无缺的相似度,
- sentence-bert_pytorch语义文本相似度算法模型
技术瘾君子1573
bertpytorch人工智能语义文本相似度模型
目录Sentence-BERT论文模型结构算法原理环境配置Docker(方法一)Dockerfile(方法二)Anaconda(方法三)数据集训练单机多卡单机单卡推理result精度应用场景算法类别热点应用行业源码仓库及问题反馈参考资料Sentence-BERT论文Sentence-BERT:SentenceEmbeddingsusingSiameseBERT-Networkshttps://ar
- 基于SpringBoot+Vue协同过滤视频推荐系统
f168bc2b3926
1.技术介绍java+springboot+mysql+mybatis+Vue开发工具:eclipse或idea2.主要功能说明:1)用户注册、登录、首页、个人中心、我的收藏、视频新增、后台管理、2)管理员个人中心、用户管理、视频标签管理、视频信息管理、轮播图管理3)协同过滤算法根据用户的收藏喜好行为计算相似度,给有相近的用户行为推荐视频比如:用户1收藏了视频1、2、3用户2收藏了视频1、3、6用
- 每天五分钟计算机视觉:Siamese深度神经网络模型和FaceNet的关系
幻风_huanfeng
计算机视觉计算机视觉dnn人工智能SiameseFaceNet神经网络
本文重点在前面的课程中,我们学习了Siamese深度神经网络模型和FaceNet,二者都可以完成人脸识别任务,本文进行整理学习,理清二者的区别和联系。基本概念与原理Siamese深度神经网络模型Siamese网络,又称孪生网络,由两个结构相同且权重共享的神经网络组成。这两个网络分别处理输入的对比样本,通过比较两个输入样本的特征向量来判断它们的相似度。在人脸识别中,Siamese网络通过计算输入人脸
- 【ADXL373、ADXL372】超低功耗加速度计的驱动代码测试
我要做技术大佬
单片机嵌入式硬件模块测试github
一、概述前言:基于对大G值加速度传感计的开发需求,我先后接触了ADXL375、ADXL373、ADXL372,其中ADXL375的示例代码比较丰富,另外两个相对较少,所以我后续就根据数据手册对ADXL373的驱动代码进行了编写(ADXL372的寄存器和ADXL373相似度极高),最终完成了对两种芯片的驱动编写。目的:本文将重点介绍ADXL373在SPI通信模式下的驱动代码结构以及编写过程。当然我最
- YOLOv9独家改进:一种高效移动应用的卷积加性自注意Vision Transformer
AI小怪兽
YOLOv9魔术师YOLOtransformer深度学习开发语言人工智能python
本文独家改进:轻量化改进之高效移动应用的卷积加性自注意VisionTransformer,构建了一个新颖且高效实现方式——卷积加性相似度函数,并提出了一种名为卷积加性标记混合器(CATM)的简化方法来降低计算开销《YOLOv9魔术师专栏》将从以下各个方向进行创新:【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【SPPEL
- 一般买高仿手表在哪里买,这5大途径不要错过
富腕表之家
高仿手表是一种外观与高档品牌手表几乎一模一样的仿制品。由于其相似度高,并且价格相对较低,所以受到一些人的喜爱。那么,大家可能会问,高仿手表在哪里可以购买到呢?接下来我将为大家推荐十个购买高仿手表的渠道。商家联系微信:kb137139一、高仿手表在哪里买1、实体店购买,实体店是购买高仿手表最常见的渠道之一。各大品牌的实体店都可以购买到机械表,而且有各种款式可供选择,同时还能享受品牌的服务和售后保障。
- 程序猿成长之路之数据挖掘篇——Kmeans聚类算法
zygswo
数据挖掘数据挖掘算法kmeans
Kmeans是一种可以将一个数据集按照距离(相似度)划分成不同类别的算法,它无需借助外部标记,因此也是一种无监督学习算法。什么是聚类用官方的话说聚类就是将物理或抽象对象的集合分成由类似的对象组成的多个类的过程。用自己的话说聚类是根据不同样本数据间的相似度进行种类划分的算法。这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布。什么是K-means聚类用官方的
- 高仿lv托特包一般什么价格,高仿lv托特包售价一览表
桃朵桃朵
当我们谈论“lv托特包高仿一般什么价格”时,首先需要明确一点:高仿品的价格会因各种因素而异,包括品质、材料、制作工艺等等。因此,没有一个固定的价格可以适用于所有高仿品。微信:14527486(下单赠送精美礼品)然而,我们可以根据一些市场上的信息来大致了解高仿品的价格范围。一般来说,高仿品的售价会根据其与正品相似度、制作工艺和材料等因素有所区别。如果你想要购买高仿品,建议你先了解一些关于正品托特包的
- 小琳AI课堂:推荐系统
小琳ai
小琳AI课堂人工智能
大家好,这里是小琳AI课堂!今天我们一起来探索一个让生活变得更加个性化的神奇技术——推荐系统!首先,让我们深入了解一下推荐系统的两大核心技术:协同过滤和内容基础过滤。协同过滤:这种方法通过分析用户之间的行为相似性或项目之间的相似性来进行推荐。用户基础协同过滤:找到和你相似的其他用户,然后推荐他们喜欢的东西给你。项目基础协同过滤:分析项目之间的相似度,推荐和你过去喜欢的项目相似的其他项目。内容基础过
- K-means聚类算法:从原理到实践的全面解读
一休哥助手
人工智能算法kmeans聚类
引言在当今数据驱动的时代,机器学习技术的发展已经成为各行各业的重要驱动力。在机器学习中,聚类算法是一类被广泛应用的技术之一。聚类旨在将数据集中的样本划分为不同的组,使得组内的样本相似度高,组间的相似度低。K-means聚类算法作为聚类算法中的一种经典方法,因其简单、高效的特性被广泛应用于各个领域。在本文中,我们将深入探讨K-means聚类算法,从基本原理到实际应用,以及算法的优化和实现方法。首先,
- 向量数据库入坑:传统文本检索方式的降维打击,使用 Faiss 实现向量语义检索
soulteary
为了不折腾而去折腾的那些事faiss向量检索语义检索文本检索搜索引擎
在上一篇文章《聊聊来自元宇宙大厂Meta的相似度检索技术Faiss》中,我们有聊到如何快速入门向量检索技术,借助MetaAI(FacebookResearch)出品的faiss实现“最基础的文本内容相似度检索工具”,初步接触到了“语义检索”这种对于传统文本检索方式具备“降维打击”的新兴技术手段。有朋友在聊天中提到,希望能够聊点更具体的,比如基于向量技术实现的语义检索到底比传统文本检索强多少,以及是
- 基于用户的协同过滤以及ALS的混合召回算法
山水阳泉曲
算法机器学习人工智能矩阵python推荐算法线性代数
文章目录需求基于用户的协同过滤基本步骤相似度计算代码示例(使用余弦相似度)基于用户的协同过滤的缺点实际推荐系统中的替代方案ALSuserBaseCF+ALS混合推荐设计代码说明需求要将基于用户的协同过滤(User-BasedCollaborativeFiltering,UBCF)与交替最小二乘(AlternatingLeastSquares,ALS)结合起来,设计一个混合推荐系统。这种系统可以利用
- GPT-SoVITS语音合成服务器部署,可远程访问(全部代码和详细部署步骤)
学术菜鸟小晨
最新人工智能技术gpt人工智能
GPT-SoVITS是一个开源项目,它使用大约一分钟的语音数据便可以训练出一个优秀的TTS模型。项目的核心技术是Zero-shotTTS和Few-shotTTS。Zero-shotTTS可以让用户输入5秒钟的语音样本并立即体验转换后的语音,而Few-shotTTS则可以通过使用仅一分钟的训练数据进行模型微调,从而提高语音相似度和真实性。该项目支持多语言推理,包括但不限于英语,日语和中文。此外,项目
- 相似度太低
开花待静
人力资源部要求学历学位认证,我拿出当年的毕业证、学位证,反复对比着24年前的照片和目前在用的身份证照片……这能通过吗
- 向量数据库 Milvus:智能检索新时代
三余知行
「数智通识」「机器学习」数据库milvus智能检索高维数据检索AIGC维护
文章目录Milvus核心技术Milvus基本特点索引策略相似度计算图像检索演示Milvus基础维护环境搭建建立向量索引数据导入数据更新数据删除用户权限管理Milvus评估与调优性能评估调优技巧Milvus数据安全安全策略数据备份与恢复Milvus扩展性案例演示电影推荐在线广告投放结语随着人工智能和大数据技术的不断进步,向量数据库的应用场景愈发广泛。Milvus作为一款优秀的开源向量数据库,凭借其强
- 多组样例最小相似度python
寒香!
python开发语言
没有直接提供多组样例最小相似度的Python代码,但我们可以根据中提到的MinHash算法原理来设计一个简单的实现。MinHash是一种用于估计两个集合相似性的高效算法,通过计算两个集合的最小哈希值来估计它们的相似性。以下是一个基于MinHash原理的Python代码示例,用于计算两组样例之间的最小相似度:importrandomdefminhash(s):#这里简化了MinHash的实现,实际应
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs