- 搜广推校招面经三十八
Y1nhl
搜广推面经算法pytorch推荐算法搜索算法机器学习
字节推荐算法一、场景题:在抖音场景下为用户推荐广告词,吸引用户点击搜索,呈现广告这一流程的关键点以及可能遇到的困难。二、Transformer中对梯度消失或者梯度爆炸的处理在Transformer模型中,梯度消失和梯度爆炸是深度学习中常见的问题,尤其是在处理长序列数据时。为了克服这些问题,Transformer采用了一系列技术:2.1.残差连接(ResidualConnections)每个子层(包
- 2025最新Transformer模型及深度学习前沿技术应用
weixin_贾
PythonMATLABpython深度学习MATLAB编程深度学习模型图神经网络自编码物理信息神经网络目标检测大语言模型
第一章、注意力(Attention)机制1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展里程碑)。2、注意力机制的基本原理(什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?)3、注意力机制的主要类型:键值对注意力机制(Key-ValueAttention)、自注意力(Self-Attention)与多头注意
- 深度解析SSD2351核心板:硬核视频处理+工业级可靠性设计
明远智睿嵌入式方案商
arm开发嵌入式硬件人工智能机器人
明远智睿SSD2351核心板基于SigmaStarSSD2351芯片打造,专为高可靠性工业场景设计,其硬件配置与接口能力充分满足复杂环境下的多模态数据处理需求。芯片技术细节:视频处理能力:IVE引擎支持高斯滤波、膨胀/腐蚀等图像预处理;IPU支持人脸识别、运动检测及Transformer网络推理;显示接口支持MIPIDSI2560x1600@60fps,适配工业HMI大屏。音频处理:3通道ADC(
- PyTorch深度学习框架60天进阶学习计划第14天:循环神经网络进阶
凡人的AI工具箱
深度学习pytorch学习人工智能pythonAI编程
PyTorch深度学习框架60天进阶学习计划第14天:循环神经网络进阶在深度学习处理序列数据时,循环神经网络(RNN)家族的模型扮演着至关重要的角色。今天,我们将深入探讨循环神经网络的进阶内容,包括BiLSTM的工作机制、注意力机制的数学原理,以及Transformer编码层的实现。目录BiLSTM的双向信息流机制LSTM回顾BiLSTM架构解析时序特征融合策略BiLSTM实现与案例注意力机制原理
- 1.6 从 GPT-1 到 GPT-3.5:一路的风云变幻
少林码僧
AI大模型应用实战专栏gptgpt-3
从GPT-1到GPT-3.5:一路的风云变幻人工智能的进步一直是科技领域的一个重要话题,而在自然语言处理(NLP)领域,GPT(GenerativePre-trainedTransformer)系列模型的发布,标志着一个又一个技术突破。从2018年发布的GPT-1到2022年推出的GPT-3.5,OpenAI的每一次更新都在推动着人工智能的发展,改变了我们与计算机互动的方式。本文将带你一起回顾GP
- 使用 DeepSeek 训练属于自己写小说的模型
xinxiyinhe
DeepSeek人工智能python
如果你想使用DeepSeek训练一个专门用于写小说的模型,以下是详细的指导指南。DeepSeek是一个强大的深度学习框架,支持自然语言处理任务。我们将基于DeepSeek的API和工具,结合HuggingFace的Transformers库,完成模型的训练和部署。详细指南:使用DeepSeek训练写小说模型1.环境准备1.1安装必要的库确保你已经安装了以下Python库:pipinstalltor
- Qwen1.5-7B-实现RAG应用详细步骤
大数据追光猿
大模型数据库AI编程语言模型人工智能深度学习
1.准备工作1.1安装依赖确保你的环境中安装了以下工具和库:Python:建议使用Python3.8或更高版本。PyTorch:用于运行深度学习模型。Transformers:HuggingFace提供的库,支持加载和运行预训练模型。FAISS:用于向量检索的高效库。GPTQ支持库:如auto-gptq或gptqmodel。安装命令运行以下命令安装所需的Python包:pipinstalltorc
- 论文阅读:Recipe for a General, Powerful, Scalable Graph Transformer
不会&编程
图神经网络论文阅读论文阅读transformer深度学习图神经网络人工智能
RecipeforaGeneral,Powerful,ScalableGraphTransformer论文和代码地址1介绍与贡献2GPS模型2.1模型框架图2.2PE和SE2.3GPSlayer:一种MPNN+Transformer的混合模型GraphTransformer)论文和代码地址论文地址:https://arxiv.org/pdf/2205.12454v4代码地址:https://git
- 自然语言处理(NLP)领域大语言模型学习目录大全
彬彬侠
大模型自然语言处理NLP大模型LLMGPTBERTGLM
本文主要收集了自然语言处理(NLP)领域的大语言模型,可以可以通过点击标题链接查看具体的详情。GPT系列GPT-1(GenerativePre-trainedTransformer1)模型GPT-1(GenerativePre-trainedTransformer1)是OpenAI在2018年6月提出的第一代GPT模型,也是第一个基于Transformer结构的自回归(Autoregressive
- 深入浅出的理解deepseek类大模型(附运行代码)
AI人工智能时代
人工智能transformer机器人深度学习
我们把Qwen2模型想象成一个非常聪明的“阅读理解专家”。这个专家,就像我们人类一样,需要先“看”到文字,然后才能理解文字的意思,最后才能回答问题或者生成新的文字。深入理解之运行代码:fromtransformers.models.qwen2importQwen2Config,Qwen2Modelimporttorchdefrun_qwen2():#根据模型需求配置参数,构造Qwen2模型的配置对
- 深度解构:DeepSeek大模型架构与前沿应用的未来探秘
威哥说编程
架构ai
随着人工智能(AI)领域的快速发展,深度学习模型逐渐向着更加复杂和强大的方向演进。在这一波技术浪潮中,DeepSeek大模型作为一个重要代表,凭借其卓越的表现和广泛的应用,正在重新定义我们对AI的认知和期待。本篇文章将从架构到应用,全面解析DeepSeek大模型的技术特点,探索其在未来可能带来的创新与变革。1.DeepSeek大模型的架构设计DeepSeek大模型采用的是基于Transformer
- 新型模型架构(参数化状态空间模型、状态空间模型变种)
三月七꧁ ꧂
LLM语言模型gpt文心一言promptembeddingAIGCagi
文章目录参数化状态空间模型状态空间模型变种 Transformer模型自问世以来,在自然语言处理、计算机视觉等多个领域得到了广泛应用,并展现出卓越的数据表示与建模能力。然而,Transformer的自注意力机制在计算每个词元时都需要利用到序列中所有词元的信息,这导致计算和存储复杂度随输入序列长度的平方级别增长。在处理长序列时,这种复杂性会消耗大量的计算资源与存储空间。为了解决这个问题,研究人
- 人工智能基础知识
yzx991013
人工智能
首先分为两大类:一:机器视觉cv1.特征比较明显2.经典模型:cnn,resnet,deepface,yolov(1-12),vi-transformer。缺点:不能解决收听问题。3.落地,无人识别,轨道追踪,无人驾驶,(主要解决看的东西)。二:自然语言处理nlp(语音识别)处理(文本)方面解决(说和听的问题),RNN,LSTM,attention,transformer(基于规则的翻译,超越普通
- Bert学习笔记
缓释多巴胺。
大模型相关知识语言模型bert
一、Bert架构BERT使用了双向的TransformerGPT使用从左到右的单向信息ELMo把单独训练的从左到右及从右到左的LSTM模型进行合并二、Bert预训练任务2.1遮蔽语言模型MLM任务:随机屏蔽(masking)部分输入token,然后只预测那些被屏蔽的token。问题:预训练任务与微调任务不一致原因:在finetuning期间从未看到[MASK]token,预训练和finetunin
- YOLOv12改进之A2(区域注意力)
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法
注意力回顾注意力机制作为深度学习领域的核心技术,已广泛应用于自然语言处理和计算机视觉等多个领域。在YOLOv12改进之A2中,注意力机制扮演着关键角色。已有研究成果包括:Transformer架构:引入了自注意力机制,有效捕捉输入序列中的长距离依赖关系。CBAM模块:提出了通道和空间注意力的结合,显著提升了图像分类和目标检测的性能。SENet:引入了通道注意力机制,通过自适应学习特征通道的重要性,
- 目前市场上的人工智能大模型有哪些?
国货崛起
大模型人工智能人工智能
截至最后更新时间(2024年3月中旬),以下是国内外部分知名的人工智能大模型,按类别和用途大致分类如下:国外:自然语言处理(NLP)大模型:OpenAIGPT系列:GPT-3:迄今为止最为知名的自然语言处理大模型之一,具备强大的文本生成、理解和对话能力。GPT-4:后续版本,性能和参数量比GPT-3更高,各项指标均有所提升。Google的Transformer系列:BERT(Bidirection
- 自动驾驶---LSTM模型用于轨迹预测
智能汽车人
自动驾驶lstm人工智能自然语言处理
1前言在下面几篇博客中,笔者简单介绍过Transformer,Transformer的内部结构虽然比较清晰,但对于入门者来说还是复杂了一些。《人工智能---什么是Transformer?》《自动驾驶---视觉Transformer的应用》《自动驾驶---Parking端到端架构》中介绍的轨迹Decoder模块本篇博客和读者朋友们探讨一种比较早的模型(理解起来也相对容易一些):LSTM(LongSh
- 大模型入门
24k小善
AI编程AI写作prompt
大模型技术演进的核心脉络当前大模型技术已进入"参数规模+架构创新"双轮驱动阶段。2025年的最新趋势显示,万亿级参数模型在稀疏激活(如Mixture-of-Experts)与动态路由技术加持下,推理成本较传统密集模型降低57%。Transformer架构的持续演进体现在位置编码改进(如RoPE旋转位置编码)、注意力机制优化(FlashAttention算法提升30%训练速度)以及层级结构创新(深度
- AI语言模型的技术之争:DeepSeek与ChatGPT的架构与训练揭秘
m0_74825466
面试学习路线阿里巴巴chatgpt人工智能语言模型
-CSDN博客目录第一章:DeepSeek与ChatGPT的基础概述1.1DeepSeek简介1.2ChatGPT简介第二章:模型架构对比2.1Transformer架构:核心相似性2.2模型规模与参数第三章:训练方法与技术3.1预训练与微调:基础训练方法3.2强化学习与奖励建模3.3知识蒸馏与量化技术第四章:训练数据与应用4.1训练数据集:数据源的差异4.2特定领域任务:应用场景的差异第五章:代
- 完整代码详解:Python实现基于文本内容的用户隐私泄露风险评估
mosquito_lover1
python开发语言
主要应用场景:社交网络隐私风险评估实现一个基于文本内容的用户隐私泄露风险评估系统,涉及多个步骤和技术。以下是一个完整的Python代码示例,涵盖了基于BERT的文本表示、基于聚类的文本隐私体系构建、基于命名实体识别的隐私信息提取、以及基于信息熵的文本隐私量化。1.安装所需的库首先,确保你已经安装了以下Python库:pipinstalltransformersscikit-learnnumpypa
- Transformer 代码剖析15 - Transformer模型代码 (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习embedding人工智能python
一、模型架构全景解析1.1类定义与继承关系classTransformer(nn.Module):该实现继承PyTorch的nn.Module基类,采用面向对象设计模式。核心架构包含编码器-解码器双塔结构,通过参数配置实现NLP任务的通用处理能力。TransformerEncoderDecoderMulti-HeadAttentionFeedForwardMaskedMulti-HeadAtten
- 详解DeepSeek模型底层原理及和ChatGPT区别点
瞬间动力
语言模型机器学习AI编程云计算阿里云
一、DeepSeek大模型原理架构基础DeepSeek基于Transformer架构,Transformer架构主要由编码器和解码器组成,在自然语言处理任务中,通常使用的是Transformer的解码器部分。它的核心是自注意力机制(Self-Attention),这个机制允许模型在处理输入序列时,关注序列中不同位置的信息。例如,在处理句子“Thecatchasedthemouse”时,自注意力机制
- 2万字长文,九篇论文读懂大语言模型的前世今生
人工智能
2万字长文,九篇论文读懂大语言模型的前世今生友情提示:这是一篇2W字长文,但我保证,它绝对值得一读!如果感兴趣的话,感谢关注,点赞转发在看收藏,五键四连,谢谢~更多LLM架构文章:LLM架构专栏近日热文:1.全网最全的神经网络数学原理(代码和公式)直观解释2.大模型进化史:从Transformer到DeepSeek-R1的AI变革之路3.2W8000字深度剖析25种RAG变体:全网最全~没有之一4
- Transformer架构简略:DeepSeek 的底层基石
windwant
人工智能人工智能transformer架构
2017年,一篇名为《AttentionisAllYouNeed》的论文横空出世,提出了Transformer架构,彻底改变了自然语言处理(NLP)领域的格局。它不仅在各种NLP任务上取得了突破性进展,更成为了当今人工智能领域最具影响力的架构之一。一、从RNN到Transformer:突破瓶颈,开创先河在Transformer出现之前,循环神经网络(RNN)及其变体(如LSTM、GRU)是处理序列
- QKV 注意力机制在Transformer架构中的作用,和卷积在卷积神经网络中的地位,有哪些相似之处?
安意诚Matrix
机器学习笔记transformercnn深度学习
QKV注意力机制在Transformer架构中的作用,和卷积在卷积神经网络中的地位,有哪些相似之处?QKV(Query-Key-Value)注意力机制在Transformer架构和卷积在卷积神经网络(CNN)中都起着核心作用,它们有以下一些相似之处:特征提取QKV注意力机制:在Transformer中,QKV注意力机制通过Query与Key的计算来确定对不同位置Value的关注程度,从而自适应地提
- 深入理解 Transformer:用途、原理和示例
范吉民(DY Young)
简单AI学习transformer深度学习人工智能
深入理解Transformer:用途、原理和示例一、Transformer是什么Transformer是一种基于注意力机制(AttentionMechanism)的深度学习架构,在2017年的论文“AttentionIsAllYouNeed”中惊艳登场。它打破了传统循环神经网络(RNN)按顺序处理序列、难以并行计算以及卷积神经网络(CNN)在捕捉长距离依赖关系上的局限,另辟蹊径地采用多头注意力机制
- DeepSeek到TinyLSTM的知识蒸馏
猴的哥儿
笔记python机器学习深度学习神经网络AI编程
一、架构设计与适配模型结构对比:DeepSeek(教师模型):基于Transformer,多头自注意力机制,层数≥12,隐藏层维度≥768TinyLSTM(学生模型):单层双向LSTM,隐藏单元128,全连接输出层表示空间对齐:classAdapter(nn.Module):def__init__(self,in_dim=768,out_dim=128):super().__init__()sel
- Deepseek的底层架构思维构成
堕落年代
AI架构人工智能
专业解释一、核心架构组件:注意力机制与专家模型的革新1.多头潜在注意力机制(MLA)功能与作用:MLA是DeepSeek对传统Transformer注意力机制的创新改进。通过低秩联合压缩技术,将键(Key)和值(Value)矩阵压缩到潜在空间,显著减少推理时的显存占用。例如,MLA可将显存需求降至传统多头注意力(MHA)的个位数百分比。优势:显存效率:KV缓存需求降低80%以上,支持更长上下文处理
- 计算机视觉|ConvNeXt:CNN 的复兴,Transformer 的新对手
紫雾凌寒
AI炼金厂#计算机视觉#深度学习机器学习计算机视觉人工智能transformerConvNeXt动态网络神经网络
一、引言在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetworks,简称CNN)长期以来一直是核心技术,自诞生以来,它在图像分类、目标检测、语义分割等诸多任务中都取得了令人瞩目的成果。然而,随着VisionTransformer(ViT)的出现,计算机视觉领域的格局发生了重大变化。ViT通过自注意力机制,打破了传统卷积神经网络的局部感知局限,能够捕捉长距离依赖关系,在图
- BERT 和 Milvus 构建智能问答系统的全面技术解析,涵盖从原理到实践的完整流程
结合BERT和Milvus构建智能问答系统的全面技术解析,涵盖从原理到实践的完整流程。下面Python代码示例和优化策略:一、技术栈协作原理BERT的语义编码能力BERT作为预训练语言模型,通过双向Transformer结构将文本转换为高维向量(如768维),捕捉上下文语义信息。例如,句子"Milvus是向量数据库"会被编码为类似[0.2,-1.3,0.5,...]的向量19。Milvus的向量检
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring