- Python 数据分析与可视化 Day 11 - 特征工程基础
蓝婷儿
pythonpython数据分析人工智能
✅今日目标理解特征工程在数据分析和机器学习中的意义掌握常见特征类型的处理方式:数值型、类别型、时间型学习特征提取、转换、标准化、独热编码(One-HotEncoding)等核心操作为后续建模任务做好特征准备工作一、什么是特征工程?特征工程是将原始数据转换为模型可学习的“特征向量”的过程,是机器学习效果好坏的核心因素之一。常见任务包括:缺失值处理(已学)异常值处理(已学)数值归一化、标准化类别变量编
- 线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础
程序员勇哥
人工智能(AI)线性代数人工智能大数据python
线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础在人工智能、量化投资和大数据分析中,优化问题无处不在,比如机器学习的损失函数最小化、量化投资组合的风险最小化等。而二次型与正定矩阵作为线性代数中的重要概念,为解决这些优化问题提供了坚实的数学基础。本篇将深入解析它们的原理及其在实际场景中的关键应用。一、二次型:从向量到函数的桥梁1.定义与表达式二次型是一个关于向量x\mathbf{x}x的二次齐
- 基于django+Spark+大数据+爬虫技术的国漫推荐与可视化平台设计和实现(源码+论文+部署讲解等)
阿勇学长
大数据项目实战案例Java精品毕业设计实例Python数据可视化项目案例大数据djangospark国漫推荐与可视化平台毕业设计Java
博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等
- 文本生成新纪元:解锁大模型的企业级应用密码
数字化浪潮席卷各行业的当下,文本生成技术正经历着翻天覆地的变革,这场变革的幕后功臣正是大模型。今天,咱们就来深入探讨大模型在文本生成领域的奥秘,看看它如何赋能企业,又该怎样规避风险,实现价值最大化。技术跃迁:从笨拙规则到智能生成回首往昔,文本生成依靠规则模板与关键字替换,虽能实现基础自动化,却如机械舞者,动作生硬、缺乏灵动。业务稍有变动,规则需全面重构,耗时费力。随着N-gram等统计机器学习方法
- 【零基础学AI】 第10讲:线性回归
1989
0基础学AI人工智能线性回归算法python回归numpy开源
本节课你将学到理解线性回归的原理和应用场景掌握最小二乘法的基本思想使用Python构建房价预测模型学会评估回归模型的性能指标开始之前环境要求Python3.8+JupyterNotebook或任何PythonIDE需要安装的包pipinstallscikit-learnpandasmatplotlibseabornnumpy前置知识第9讲:机器学习概述基本的Python和数据处理能力核心概念什么是
- 【零基础学AI】第9讲:机器学习概述
1989
0基础学AI人工智能机器学习pythonnumpydevops开源
本节课你将学到理解什么是机器学习,以及它与传统编程的区别掌握监督学习、无监督学习的基本概念使用scikit-learn完成你的第一个机器学习项目构建一个完整的iris花朵分类器开始之前环境要求Python3.8+JupyterNotebook或任何PythonIDE需要安装的包pipinstallscikit-learnpandasmatplotlibseaborn前置知识基本的Python语法(
- NLP随机插入
Humbunklung
机器学习自然语言处理人工智能pythonnlp
文章目录随机插入示例Python代码示例随机插入随机插入是一种文本数据增强方法,其核心思想是在原句中随机选择若干位置,插入与上下文相关的词语,从而生成新的训练样本。这种方法能够增加句子的多样性,提高模型对不同词序和表达方式的鲁棒性。示例原句:机器学习可以提升数据分析的效率。随机插入后(插入“显著”):机器学习可以显著提升数据分析的效率。Python代码示例下面是一个简单的随机插入实现,假设我们有一
- 【TVM 教程】PAPI 入门
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/性能应用程序编程接口(PerformanceApplicationProgrammingInterface,简称PAPI)是一个可在各种平台上提供性能计数器的库。在指定的运行期间,性能计数器提供处理器行为的准确底层信息,包含简单的指标,如总
- 机器学习在智能供应链中的应用:需求预测与库存优化
Blossom.118
机器学习与人工智能机器学习人工智能机器人深度学习python神经网络sklearn
在当今全球化的商业环境中,供应链管理的效率和灵活性对于企业的竞争力至关重要。智能供应链通过整合先进的信息技术,如物联网(IoT)、大数据和机器学习,能够实现从原材料采购到产品交付的全流程优化。机器学习技术在智能供应链中的应用尤为突出,尤其是在需求预测和库存优化方面。本文将探讨机器学习在智能供应链中的应用,并分析其带来的机遇和挑战。一、智能供应链中的需求预测准确的需求预测是供应链管理的核心。需求预测
- 面向隐私保护的机器学习:联邦学习技术解析与应用
Blossom.118
机器学习与人工智能机器学习人工智能深度学习tensorflowpython神经网络cnn
在当今数字化时代,数据隐私和安全问题日益受到关注。随着《数据安全法》《个人信息保护法》等法律法规的实施,企业和机构在数据处理和分析过程中面临着越来越严格的合规要求。然而,机器学习模型的训练和优化往往需要大量的数据支持,这就产生了一个矛盾:如何在保护数据隐私的前提下,充分利用数据的价值进行机器学习模型的训练和优化?联邦学习(FederatedLearning)作为一种新兴的隐私保护技术,为解决这一问
- AI驱动的智能电网:平衡供需提高效率
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
智能电网,AI,机器学习,预测模型,优化算法,供需平衡,能源效率1.背景介绍随着全球能源需求的不断增长和可再生能源的快速发展,传统电网面临着越来越多的挑战。传统的电网结构是集中式供电,难以适应分布式能源的接入和负荷需求的波动性。智能电网应运而生,它利用先进的通信技术、传感器网络和数据分析技术,实现电网的自动化、智能化和可视化,从而提高电网的可靠性、效率和安全性。人工智能(AI)作为一种新兴技术,在
- AI 技术&AI开发框架
34号树洞
人工智能深度学习人工智能机器学习NLPGAI
目录一、AI技术及其开发框架1.AI技术分类与代表方向2.主流AI开发框架3.AI应用开发流程简述4.补充:基础依赖与生态二、AI技术方向1.机器学习(MachineLearning,ML)✦核心概念:✦关键方法:✦应用案例:2.深度学习(DeepLearning,DL)✦核心概念:✦网络结构举例:✦技术趋势:3.自然语言处理(NLP)✦核心任务:✦代表模型:4.计算机视觉(ComputerVis
- 机器学习算法——神经网络1(神经元模型)
神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。神经网络中最基本的成分是神经元(neuron)模型。即上述定义中的“简单单元”。在生物神经网络中,每个神经元与其他申请元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经
- 深度学习使用Pytorch训练模型步骤
vvvdg
深度学习pytorch人工智能
训练模型是机器学习和深度学习中的核心过程,旨在通过大量数据学习模型参数,以便模型能够对新的、未见过的数据做出准确的预测。训练模型通常包括以下几个步骤:1.数据准备:收集和处理数据,包括清洗、标准化和归一化。将数据分为训练集、验证集和测试集。2.定义模型:选择模型架构,例如决策树、神经网络等。初始化模型参数(权重和偏置)。3.选择损失函数:根据任务类型(如分类、回归)选择合适的损失函数。4.选择优化
- 常见的强化学习算法分类及其特点
ywfwyht
人工智能算法分类人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,通过智能体(Agent)与环境(Environment)的交互来学习如何采取行动以最大化累积奖励。以下是一些常见的强化学习算法分类及其特点:1.基于值函数的算法这些算法通过估计状态或状态-动作对的价值来指导决策。Q-Learning无模型的离线学习算法。通过更新Q值表来学习最优策略。更新公式:Q(s,a)←Q(s,a)
- Scikit-learn:机器学习的「万能工具箱」
科技林总
DeepSeek学AI人工智能
——三行代码构建AI模型的全栈指南**###**一、诞生背景:让机器学习从实验室走向大众****2010年前的AI困境**:-学术界模型难以工程化-算法实现碎片化(MATLAB/C++主导)-企业应用门槛极高>**破局者**:DavidCournapeau发起*Scikit-learn*项目,**统一算法接口**+**Python简易语法**=机器学习民主化革命---###**二、设计哲学:一致性
- 如何看待机器学习方法在超分子化学领域的日渐流行?
cda2024
机器学习人工智能
大家好,今天咱们来聊聊一个既时髦又接地气的话题:如何看待机器学习方法在超分子化学领域的日渐流行?想象一下,你是一位超分子化学家,正忙于设计一种新型的分子结构,这个结构需要具备特定的功能。传统的方法是通过反复实验和理论计算来优化这个结构,但过程可能非常耗时且复杂。而现在,借助机器学习,你可以更快、更准确地找到最优解。这就是为什么机器学习在超分子化学领域变得越来越受欢迎的原因之一。一、超分子化学是什么
- 助力您发SCI 机器学习(ML)在材料领域应用专题
YEcenfei
分子动力学催化材料机器学习人工智能python
第一天机器学习在材料与化学常见的方法理论内容1.机器学习概述2.材料与化学中的常见机器学习方法3.应用前沿实操内容Python基础1.开发环境搭建2.变量和数据类型3.列表4.if语句5.字典6.For和while循环实操内容Python基础(续)1.函数2.类和对象3.模块Python科学数据处理1.NumPy2.Pandas3.Matplotlib第二天机器学习材料与化学应用<
- 算法大厨日记:猫猫狐狐带你用代码做一锅香喷喷的“预测汤”
Gyoku Mint
AI修炼日记猫猫狐狐的小世界人工智能人工智能机器学习python算法database深度学习数据挖掘
️【开场·今天的料理名叫“预测炖汤”】猫猫:“咱今天突发奇想,决定用机器学习代码给你炖一锅‘预测汤’喵!这不是教你代码,是要告诉你怎么把‘算法’吃进肚子里~”狐狐:“别急,她又在打比方了。这锅汤从数据准备到调参优化,就跟你平常做饭的过程没两样,只不过食材都被咱们用代码换了一遍。”【第一步·数据准备,就是挑菜啦】猫猫:“首先是挑菜(数据预处理),不能什么菜都扔进去锅里吧?要洗干净去皮(数据清洗),再
- 因果推理与因果学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
因果推理与因果学习原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:因果关系发现、因果推断、因果学习、机器学习、统计方法1.背景介绍1.1问题的由来在现实世界的数据分析中,我们经常面临这样的挑战:从观察数据中识别出潜在的原因与效果之间的关联,并理解这些关联背后的实际机制。传统的预测建模关注于基于输入变量对输出变量进行预测,
- 信息检索简介——文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2005年8月17日至9月3日在美国加利福尼亚州伯克莱纳举行了SIGIR国际会议(中文全称“计算机信息retrieval国际会议”),这是信息检索领域的顶级会议之一。该会议由ACM主办,主题涵盖了包括文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等多个热门方向。此次会议是第一次将信息检索作为一个学科,并取得重大突破。本文试图对SIGIR进行一个完整的介绍,阐述
- R 语言简介:数据分析与统计的强大工具
Mikhail_G
python数据分析大数据r语言开发语言
大家好!在如今这个数据驱动的时代,数据分析与统计分析对于各个领域都变得至关重要。而R语言,作为一款专为数据分析和统计而设计的编程语言,以其强大的功能和灵活性,成为了众多数据分析师、研究人员以及统计学家的首选工具之一。什么是R语言?R是一种开源的编程语言和软件环境,主要用于统计计算、数据分析、图形表示以及机器学习等领域。它是由RossIhaka和RobertGentleman于1995年开发的,之后
- 22种创新思路!今年必将是特征选择爆发的一年
小唯啊小唯
人工智能注意力机制特征选择
2025深度学习发论文&模型涨点之——特征选择特征选择是机器学习和数据挖掘领域中一个非常重要的步骤。它指的是从原始特征集合中挑选出对目标变量有较强预测能力的特征子集。在实际的数据集中,往往包含众多特征,但并非所有特征都对模型的性能有正面影响。例如在房价预测任务中,原始特征可能包括房屋的面积、房间数量、所在小区、周边配套设施等众多内容。通过特征选择,可以剔除一些无关的或者冗余的特征,比如可能存在的重
- python读取sas数据集_SASpy模块,利用Python操作SAS
SASpy模块打通了Python与SAS之间的连接。有了SASpy模块,我们就能够在Python中操控SAS。本文将首先介绍SASpy模块的一些基本方法,最后通过一个聚类分析的例子,来展示如何在Python中调用SAS的机器学习过程,以及对聚类结果的可视化。SASpy模块特点1、需要Python3.X及以上,SAS9.4及以上,需要Java环境;2、无论是本地SAS还是远程服务器上的SAS,都可以
- 从决策树到随机森林:Python机器学习里的“树形家族“深度实战与原理拆解
小张在编程
机器学习决策树随机森林
引言在机器学习的算法森林中,有一对"树形兄弟"始终占据着C位——决策树像个逻辑清晰的"老教授",用可视化的树状结构把复杂决策过程拆解成"是/否"的简单判断;而它的进阶版随机森林更像一支"精英军团",通过多棵决策树的"投票表决",在准确性与抗过拟合能力上实现了质的飞跃。无论是医疗诊断中的疾病预测,还是金融风控里的违约判别,这对组合都用强大的适应性证明着自己的"算法常青树"地位。今天,我们就从原理到实
- 深入详解:随机森林算法——概念、原理、实现与应用场景
猿享天开
算法随机森林机器学习
深入详解:随机森林算法——概念、原理、实现与应用场景随机森林(RandomForest,RF)是一种经典的集成学习算法,广泛应用于机器学习任务。本文将通过图文结合的方式,全面解析随机森林的核心原理、实现细节和应用实践,帮助读者建立系统认知。1.核心概念与直观理解1.1什么是随机森林?随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树进行协同预测。其核心思想是"三个臭皮匠,顶个诸葛亮"——多
- python ks值计算_风控模型中的K-S理解以及python实现
weixin_39747293
pythonks值计算
笔者在工作中计算单变量的ks值时,发现几个分布不同的变量好y计算的ks值相同,凭借统计直觉,发现一定存在问题,笔者从数据和计算ks代码两个方向进行排除。最后定位到计算使用stats.ks_2samp()函数计算ks值时,如果变量存在缺失值,计算得到ks值有误,下面笔者就来好好梳理一下ks值的前世今生。ks检验介绍笔者刚入门机器学习开始做的例子就是金融场景下风控模型。那时评价模型的好坏就用传统的机器
- **双生“基尼”**:跨越世纪的术语撞车与学科分野
在学术的宇宙中,“基尼”(Gini)这个名字如同一个奇特的星标,闪耀在两个看似毫不相关的领域:衡量社会贫富差距的经济学与驱动人工智能的机器学习。然而,当人们在这两个领域都遇到“基尼指数”或“基尼系数”时,困惑油然而生——它们为何如此不同?又为何共享同一个名字?这不是某个“傻逼”的随意命名,而是一场跨越学科与世纪的“术语交通事故”,其背后是学术传承与概念抽象的交织。本文由「大千AI助手」原创发布,专
- 【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
IT古董
人工智能课程机器学习算法神经网络
第二章:机器学习与神经网络概述第三部分:类算法理论与实践第三节:决策树分类器内容:信息增益、剪枝技术、过拟合与泛化能力。决策树是一种常用于分类和回归的树状结构模型,它通过一系列特征判断进行决策,有良好的可解释性。一、基本概念节点(Node):表示特征判断条件边(Branch):表示特征判断的结果路径叶子节点(Leaf):表示分类结果二、划分准则:信息增益(InformationGain)信息增益衡
- RDKit:药物化学和分子数据处理的强大工具库
碳酸的唐
机器学习人工智能
引言在药物研发、化学信息学和分子设计领域,高效处理和分析分子数据是至关重要的。RDKit作为一个开源的化学信息学和机器学习工具包,为研究人员和数据科学家提供了丰富的功能,包括分子操作、描述符计算、指纹生成、相似性比较、子结构搜索和分子可视化等。本文将详细介绍RDKit的主要功能、应用场景以及实际操作示例,展示这一强大工具在分子数据处理中的核心价值。RDKit简介RDKit是一个由C++和Pytho
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio