独立成分分析 与 功能连接之间的关联尝试 by 张高燕

          

在处理fMRI数据时,使用空间ICA的方法。
 
将一个四维的fMRI数据分解为空间pattern与时间序列的乘积。 //这里的pattern=component
 
其中每一pattern的时间序列是该pattern中强度(z-score值)最大的voxel的时间序列 。//取component中z值最大的voxel的timecourse作为此pattern的timecourse
 
该pattern中剩余voxel的时间序列与最大voxel的时间序列的相关性逐渐降低。对应在pattern中就是剩余voxel的z-score值降低。
 
因此pattern其实是一个脑网络,可以理解为以最大z-score值也就是peak value与全脑求功能连接得到的连接图。
 
如果用一个pattern中的peak value为圆心,做ROI,求全脑功能连接,得到的功能连接图fc map与ICA求得的pattern是十分相似的。
                                                  // fc map= functional map
 
ROI的半径越小,fc map与ICA pattern越相似。
 
因此在比较前后两次静息态扫描(中间是任务态的学习)某一个网络的变化,可以使用空间ICA找到该网络进行配对检验也可以前后计算fc map来配对检验。
 
二者结果理论上应该是比较接近的。
 
之所以说二者结果接近而不是一致是因为前后两次扫描可能会导致peak value所在的voxel不一样,如第一次在voxelA,第二次在voxelB,另外数据中也存在些噪音还有头动等都会影响结果。
 
空间ICA得到的pattern在空间上是独立的,也就是空间不重合的。因此每一个pattern就构成了一个脑网络,它们在空间上是不重合的。

你可能感兴趣的:(连接)